Electromagnetic interference(EMI)shielding materials principally attain shielding by reflecting electromagnetic waves through impedance mismatch caused by high conductivity,which inevitably leads to secondary electrom...Electromagnetic interference(EMI)shielding materials principally attain shielding by reflecting electromagnetic waves through impedance mismatch caused by high conductivity,which inevitably leads to secondary electromagnetic wave pollution.Consequently,the development of multifunctional,low-reflection electromagnetic shielding materials remains a significant challenge.Materials that are lightweight,possess high mechanical strength,exhibit excellent electromagnetic shielding absorption,and demonstrate low reflectivity have historically been the focus of significant interest.Natural silk,lightweight and strong,is an ideal composite matrix.Regenerated silk fibroin(RSF)synthesized via a bottom-up approach and cross-linked with polyvinyl alcohol(PVA)forms an aerogel matrix with remarkable compressive strength.In accordance with the principle of integrating functional design with structural design,spherical NiFe_(2)O_(4)particles were grown on the MXene surface via electrostatic self-assembly and combined with RSF/PVA as the aerogel absorptive layer,while RSF/PVA/MXene served as the reflective layer.A vertically oriented structure of Janus aerogel was prepared through sequential directed freezing.The resulting aerogel with 0.058 g/cm^(3) reveals the high compression strength(3.52 MPa).Reasonable functional and structural design enables aerogel to effectively dissipate incident electromagnetic waves through absorption,reflection,and reabsorption processes,achieving an average SET value of 48.05±1.75 dB and reaching a minimum reflection coefficient of 0.19.Furthermore,the aerogel displays remarkable infrared stealth capabilities.This lightweight,rigid,multifunctional aerogel is poised to play a significant role in the field of next-generation electronic devices.展开更多
Aerogels are ultra-lightweight,porous materials defined by a complex network of interconnected pores and nanostructures,which effectively suppress heat transfer,making them exceptional for thermal insulation.Furthermo...Aerogels are ultra-lightweight,porous materials defined by a complex network of interconnected pores and nanostructures,which effectively suppress heat transfer,making them exceptional for thermal insulation.Furthermore,their porous architecture can trap and scatter light via multiple internal reflections,extending the optical path within the material.When combined with suitable light-absorbing materials,this feature significantly enhances light absorption(darkness).To validate this concept,mesoporous silica aerogel particles were incorporated into a resorcinol-formaldehyde(RF)sol,and the silica-to-RF ratio was optimized to achieve uniform carbon compound coatings on the silica pore walls.Notably,increasing silica loading raised the sol viscosity,enabling formulations ideal for direct ink writing processes with excellent shape fidelity for super-black topographical designs.The printed silica-RF green bodies exhibited remarkable mechanical strength and ultra-low thermal conductivity(15.8 m W m^(-1) K^(-1))prior to pyrolysis.Following pyrolysis,the composites maintained structural integrity and printed microcellular geometries while achieving super-black coloration(abs.99.56%in the 280-2500 nm range)and high photothermal conversion efficiency(94.2%).Additionally,these silica-carbon aerogel microcellulars demonstrated stable electrical conductivity and low electrochemical impedance.The synergistic combination of 3D printability and super-black photothermal features makes these composites highly versatile for multifunctional applications,including on-demand thermal management,and efficient solar-driven water production.展开更多
By combining the merits of radiative cooling(RC)and evaporation cooling(EC),radiative coupled evaporative cooling(REC)has attracted considerable attention for sub-ambient cooling purposes.However,for outdoor devices,t...By combining the merits of radiative cooling(RC)and evaporation cooling(EC),radiative coupled evaporative cooling(REC)has attracted considerable attention for sub-ambient cooling purposes.However,for outdoor devices,the interior heating power would increase the working temperature and fire risk,which would suppress their above-ambient heat dissipation capabilities and passive water cycle properties.In this work,we introduced a REC design based on an all-in-one photonic hydrogel for above-ambient heat dissipation and flame retardancy.Unlike conventional design RC film for heat dissipation with limited cooling power and fire risk,REC hydrogel can greatly improve the heat dissipation performance in the daytime with a high workload,indicating a 12.0℃lower temperature than the RC film under the same conditions in the outdoor experiment.In the nighttime with a low workload,RC-assisted adsorption can improve atmospheric water harvesting to ensure EC in the daytime.In addition,our REC hydrogel significantly enhanced flame retardancy by absorbing heat without a corresponding temperature rise,thus mitigating fire risks.Thus,our design shows a promising solution for the thermal management of outdoor devices,delivering outstanding performance in both heat dissipation and flame retardancy.展开更多
Ceramic aerogels(CAs)have emerged as a significant research frontier across various applications due to their lightweight,high porosity,and easily tunable structural characteristics.However,the intrinsic weak interact...Ceramic aerogels(CAs)have emerged as a significant research frontier across various applications due to their lightweight,high porosity,and easily tunable structural characteristics.However,the intrinsic weak interactions among the constituent nanoparticles,coupled with the limited toughness of traditional CAs,make them susceptible to structural collapse or even catastrophic failure when exposed to complex mechanical external forces.Unlike 0D building units,1D ceramic nanofibers(CNFs)possess a high aspect ratio and exceptional flexibility simultaneously,which are desirable building blocks for elastic CAs.This review presents the recent progress in electrospun ceramic nanofibrous aerogels(ECNFAs)that are constructed using ECNFs as building blocks,focusing on the various preparation methods and corresponding structural characteristics,strategies for optimizing mechanical performance,and a wide range of applications.The methods for preparing ECNFs and ECNFAs with diverse structures were initially explored,followed by the implementation of optimization strategies for enhancing ECNFAs,emphasizing the improvement of reinforcing the ECNFs,establishing the bonding effects between ECNFs,and designing the aggregate structures of the aerogels.Moreover,the applications of ECNFAs across various fields are also discussed.Finally,it highlights the existing challenges and potential opportunities for ECNFAs to achieve superior properties and realize promising prospects.展开更多
Bone regeneration for non-load-bearing defects remains a significant clinical challenge requiring advanced biomaterials and cellular strategies.Adiposederived mesenchymal stem cells(AD-MSCs)have garnered significant i...Bone regeneration for non-load-bearing defects remains a significant clinical challenge requiring advanced biomaterials and cellular strategies.Adiposederived mesenchymal stem cells(AD-MSCs)have garnered significant interest in bone tissue engineering(BTE)because of their abundant availability,minimally invasive harvesting procedures,and robust differentiation potential into osteogenic lineages.Unlike bone marrow-derived mesenchymal stem cells,AD-MSCs can be easily obtained in large quantities,making them appealing alternatives for therapeutic applications.This review explores hydrogels containing polymers,such as chitosan,collagen,gelatin,and hyaluronic acid,and their composites,tailored for BTE,and emphasizes the importance of these hydrogels as scaffolds for the delivery of AD-MSCs.Various hydrogel fabrication techniques and biocompatibility assessments are discussed,along with innovative modifications to enhance osteogenesis.This review also briefly outlines AD-MSC isolation methods and advanced embedding techniques for precise cell placement,such as direct encapsulation and three-dimensional bioprinting.We discuss the mechanisms of bone regeneration in the AD-MSC-laden hydrogels,including osteoinduction,vascularization,and extracellular matrix remodeling.We also review the preclinical and clinical applications of AD-MSC-hydrogel systems,emphasizing their success and limitations.In this review,we provide a comprehensive overview of AD-MSC-based hydrogel systems to guide the development of effective therapies for bone regeneration.展开更多
In the context of the rapid development of artificial intelligence and robotics,their application scenarios are continuously expanding to a variety of complex environments,with increasing attention being paid to the u...In the context of the rapid development of artificial intelligence and robotics,their application scenarios are continuously expanding to a variety of complex environments,with increasing attention being paid to the use of flexible sensors in lowtemperature environments.In this study,an ionic hydrogel was synthesized using acrylamide(AM),hydroxyethyl cellulose(HEC),and lithium chloride(LiCl)as composites.This hydrogel exhibits high adhesion,excellent sensitivity(gauge factor(GF)=2.84),rapid response time(100 ms),exceptional stretch ability(>1776%),high toughness(2.5 MJ/m^(3)),and the ability to maintain detectability at low temperatures(-60℃).HEC imparts reliable mechanical properties to the sensor through hydrogen bonding interactions of its hydroxyl groups.LiCl ensures that the sensor has outstanding antifreezing properties,maintains good conductivity and mechanical performance.Used for robotic attitude detection,the sensor demonstrated accurate recognition of various joint movements at both 20 and -20℃.This technology was extended to industrial operations and maintenance,where a mechanical claw was used to grasp parts at both room temperature and low temperature.A convolutional neural network deep learning algorithm was employed to identify and classify eight types of parts,achieving an impressive recognition accuracy of 98.8%.The polyacrylamide(PAM)/HEC/LiCl hydrogel sensor demonstrates the capability for wide-temperature range detection in flexible robotics,holding significant potential for future applications in human-machine interaction,tactile perception,and related fields.展开更多
Solar-driven interfacial desalination(SID)offers a sustainable route for freshwater production,yet its long-term performance is compromised by salt crystallization and microbial fouling under complex marine conditions...Solar-driven interfacial desalination(SID)offers a sustainable route for freshwater production,yet its long-term performance is compromised by salt crystallization and microbial fouling under complex marine conditions.Zwitterionic polymers offer promising nonfouling capabilities,but current zwitterionic hydrogel-based solar evaporators(HSEs)suffer from inadequate hydration and salt vulnerability.Inspired by the natural marine environmental adaptive characteristics of saltwater fish,we report a superhydrated zwitterionic poly(trimethylamine N-oxide,PTMAO)/polyacrylamide(PAAm)/polypyrrole(PPy)hydrogel(PTAP)with dedicated water channels for efficient,durable,and nonfouling SID.The directly linked N⁺and O⁻groups in PTMAO establish a robust hydration shell that facilitates rapid water transport while resisting salt and microbial adhesion.Integrated PAAm and PPy networks enhance mechanical strength and photothermal conversion.PTAP achieves a high evaporation rate of 2.35 kg m^(−2)h^(−1)under 1 kW m^(–2)in 10 wt%NaCl solution,maintaining stable operation over 100 h without salt accumulation.Furthermore,PTAP effectively resists various foulants including proteins,bacterial,and algal adhesion.Molecular dynamics simulations reveal that the exceptional hydration capacity supports its nonfouling properties.This work advances the development of nonfouling HSEs for sustainable solar desalination in real-world marine environments.展开更多
Diabetic wound healing remains a major clinical challenge,primarily due to excessive inflammation,bacterial infection,and impaired angiogenesis.Although various biomaterial-based strategies have been explored,coordina...Diabetic wound healing remains a major clinical challenge,primarily due to excessive inflammation,bacterial infection,and impaired angiogenesis.Although various biomaterial-based strategies have been explored,coordinating the complex diabetic wound microenvironment remains difficult to achieve.This study proposes a novel multifunctional hydrogel dressing designed to synergistically address multiple issues.Its key innovation lies in dynamically crosslinking deer antler decellularized matrix(dECM)with oxidized dextran via imine bonds,creating a self-healing hydrogel(dECMH).The deer antler dECM,rich in pro-regenerative components,provides a biomimetic scaffold,while Schiff base crosslinking confers mechanical self-healing and injectability.To further address the complexity of diabetic wounds,magnesium gallate metalorganic frameworks(Mg-EGCG)were embedded within the dECMH network,forming Mg-EGCG@dECMH.This innovative combination enables sustained co-delivery of epigallocatechin gallate(EGCG)—possessing antibacterial,anti-inflammatory,and antioxidant properties—alongside magnesium ions that actively promote cell proliferation and vascular regeneration.In vitro analyses confirmed the hydrogel's capacity to enhance endothelial cell proliferation,boost angiogenesis,and mitigate oxidative stress.In vivo evaluations demonstrated accelerated wound healing,manifested by rapid inflammation resolution,ordered collagen deposition,and stimulated neovascularization.Additionally,the material exhibited excellent biocompatibility,hemostatic effects,and antimicrobial activity.This multifunctional dressing synergistically integrates the inherent bioactivity of unique antler decellularized matrix with the multimodal therapeutic effects of metal-organic nanocomposites,offering an innovative and effective strategy for diabetic wound management.展开更多
Octopuses,due to their flexible arms,marvelous adaptability,and powerful suckers,are able to effortlessly grasp and disengage various objects in the marine surrounding without causing devastation.However,manipulating ...Octopuses,due to their flexible arms,marvelous adaptability,and powerful suckers,are able to effortlessly grasp and disengage various objects in the marine surrounding without causing devastation.However,manipulating delicate objects such as soft and fragile foods underwater require gentle contact and stable adhesion,which poses a serious challenge to now available soft grippers.Inspired by the sucker infundibulum structure and flexible tentacles of octopus,herein we developed a hydraulically actuated hydrogel soft gripper with adaptive maneuverability by coupling multiple hydrogen bond-mediated supramolecular hydrogels and vat polymerization three-dimensional printing,in which hydrogel bionic sucker is composed of a tunable curvature membrane,a negative pressure cavity,and a pneumatic chamber.The design of the sucker structure with the alterable curvature membrane is conducive to realize the reliable and gentle switchable adhesion of the hydrogel soft gripper.As a proof-of-concept,the adaptive hydrogel soft gripper is capable of implement diversified underwater tasks,including gingerly grasping fragile foods like egg yolks and tofu,as well as underwater robots and vehicles that station-keeping and crawling based on switchable adhesion.This study therefore provides a transformative strategy for the design of novel soft grippers that will render promising utilities for underwater exploration soft robotics.展开更多
The operational efficiency of membrane electrode assemblies in direct liquid fuel cells is critically dependent on the fuel purity in the anode compartment.To address the inherent challenge of fuel mixing problem in a...The operational efficiency of membrane electrode assemblies in direct liquid fuel cells is critically dependent on the fuel purity in the anode compartment.To address the inherent challenge of fuel mixing problem in alcohol systems,we propose a rational catalyst design strategy focusing on morphological and compositional optimization.Sodium borohydride-derived PtCuMo alloy aerogels(AA)exhibit abundant grain boundary defects,while solvothermally prepared nanowire arrays(NA)maintain excellent single-crystalline characteristics.Density functional theory calculations demonstrate that engineered grain boundaries can effectively broaden the adsorption energy window for key reaction intermediates,enabling superior adaptability to diverse catalytic pathways.By precisely controlling Cu content,we identified Pt_(3)Cu_(3)Mo_(0.5)AA as the optimal catalyst configuration,demonstrating 150% enhancement in methanol oxidation reaction activity compared to Pt_(3)Cu_(6)Mo_(0.5)NA(1.5 vs.0.6 A·mg_(Pt)^(-1))and 17% improvement in ethanol oxidation reaction performance versus Pt_(3)Cu_(1)Mo_(0.5)NA(0.82 vs.0.70 A·mg_(Pt)^(-1)).Practical application testing using gas diffusion electrodes(anode loading:0.85 mg_(Pt)·cm^(-2))achieved a mass-specific power density of 14.14 W·g_(Pt)^(-1)in 1:1 methanol/ethanol blends,representing a 3.5-fold improvement over commercial Pt/C benchmarks.This work establishes a fundamental framework for developing highperformance,broad-spectrum electrocatalysts in advanced fuel cell systems.展开更多
基金supported by Key R&D Program of Shandong Province,China(No.2025CXGC010407).
文摘Electromagnetic interference(EMI)shielding materials principally attain shielding by reflecting electromagnetic waves through impedance mismatch caused by high conductivity,which inevitably leads to secondary electromagnetic wave pollution.Consequently,the development of multifunctional,low-reflection electromagnetic shielding materials remains a significant challenge.Materials that are lightweight,possess high mechanical strength,exhibit excellent electromagnetic shielding absorption,and demonstrate low reflectivity have historically been the focus of significant interest.Natural silk,lightweight and strong,is an ideal composite matrix.Regenerated silk fibroin(RSF)synthesized via a bottom-up approach and cross-linked with polyvinyl alcohol(PVA)forms an aerogel matrix with remarkable compressive strength.In accordance with the principle of integrating functional design with structural design,spherical NiFe_(2)O_(4)particles were grown on the MXene surface via electrostatic self-assembly and combined with RSF/PVA as the aerogel absorptive layer,while RSF/PVA/MXene served as the reflective layer.A vertically oriented structure of Janus aerogel was prepared through sequential directed freezing.The resulting aerogel with 0.058 g/cm^(3) reveals the high compression strength(3.52 MPa).Reasonable functional and structural design enables aerogel to effectively dissipate incident electromagnetic waves through absorption,reflection,and reabsorption processes,achieving an average SET value of 48.05±1.75 dB and reaching a minimum reflection coefficient of 0.19.Furthermore,the aerogel displays remarkable infrared stealth capabilities.This lightweight,rigid,multifunctional aerogel is poised to play a significant role in the field of next-generation electronic devices.
基金financially supported by the Swiss National Science Foundation(grant number IZLRZ2_164058)the China Scholarship Council Ph.D.student exchange programthe Priority Academic Program Development of Jiangsu Higher Education Institution(PAPD)。
文摘Aerogels are ultra-lightweight,porous materials defined by a complex network of interconnected pores and nanostructures,which effectively suppress heat transfer,making them exceptional for thermal insulation.Furthermore,their porous architecture can trap and scatter light via multiple internal reflections,extending the optical path within the material.When combined with suitable light-absorbing materials,this feature significantly enhances light absorption(darkness).To validate this concept,mesoporous silica aerogel particles were incorporated into a resorcinol-formaldehyde(RF)sol,and the silica-to-RF ratio was optimized to achieve uniform carbon compound coatings on the silica pore walls.Notably,increasing silica loading raised the sol viscosity,enabling formulations ideal for direct ink writing processes with excellent shape fidelity for super-black topographical designs.The printed silica-RF green bodies exhibited remarkable mechanical strength and ultra-low thermal conductivity(15.8 m W m^(-1) K^(-1))prior to pyrolysis.Following pyrolysis,the composites maintained structural integrity and printed microcellular geometries while achieving super-black coloration(abs.99.56%in the 280-2500 nm range)and high photothermal conversion efficiency(94.2%).Additionally,these silica-carbon aerogel microcellulars demonstrated stable electrical conductivity and low electrochemical impedance.The synergistic combination of 3D printability and super-black photothermal features makes these composites highly versatile for multifunctional applications,including on-demand thermal management,and efficient solar-driven water production.
基金financially supported by the Science and Technology Innovation Program of Hunan Province(2024RC3003)the Central South University Innovation-Driven Research Programme(2023CXQD012)the Initiative for Sustainable Energy for its financial support。
文摘By combining the merits of radiative cooling(RC)and evaporation cooling(EC),radiative coupled evaporative cooling(REC)has attracted considerable attention for sub-ambient cooling purposes.However,for outdoor devices,the interior heating power would increase the working temperature and fire risk,which would suppress their above-ambient heat dissipation capabilities and passive water cycle properties.In this work,we introduced a REC design based on an all-in-one photonic hydrogel for above-ambient heat dissipation and flame retardancy.Unlike conventional design RC film for heat dissipation with limited cooling power and fire risk,REC hydrogel can greatly improve the heat dissipation performance in the daytime with a high workload,indicating a 12.0℃lower temperature than the RC film under the same conditions in the outdoor experiment.In the nighttime with a low workload,RC-assisted adsorption can improve atmospheric water harvesting to ensure EC in the daytime.In addition,our REC hydrogel significantly enhanced flame retardancy by absorbing heat without a corresponding temperature rise,thus mitigating fire risks.Thus,our design shows a promising solution for the thermal management of outdoor devices,delivering outstanding performance in both heat dissipation and flame retardancy.
基金supported by the National Natural Science Foundation of China(Nos.92371110 and 52373281)Weiqiao Science Foundation(H2872302 and H2872303)the Scientific Research Innovation Capability Support Project for Young Faculty.
文摘Ceramic aerogels(CAs)have emerged as a significant research frontier across various applications due to their lightweight,high porosity,and easily tunable structural characteristics.However,the intrinsic weak interactions among the constituent nanoparticles,coupled with the limited toughness of traditional CAs,make them susceptible to structural collapse or even catastrophic failure when exposed to complex mechanical external forces.Unlike 0D building units,1D ceramic nanofibers(CNFs)possess a high aspect ratio and exceptional flexibility simultaneously,which are desirable building blocks for elastic CAs.This review presents the recent progress in electrospun ceramic nanofibrous aerogels(ECNFAs)that are constructed using ECNFs as building blocks,focusing on the various preparation methods and corresponding structural characteristics,strategies for optimizing mechanical performance,and a wide range of applications.The methods for preparing ECNFs and ECNFAs with diverse structures were initially explored,followed by the implementation of optimization strategies for enhancing ECNFAs,emphasizing the improvement of reinforcing the ECNFs,establishing the bonding effects between ECNFs,and designing the aggregate structures of the aerogels.Moreover,the applications of ECNFAs across various fields are also discussed.Finally,it highlights the existing challenges and potential opportunities for ECNFAs to achieve superior properties and realize promising prospects.
文摘Bone regeneration for non-load-bearing defects remains a significant clinical challenge requiring advanced biomaterials and cellular strategies.Adiposederived mesenchymal stem cells(AD-MSCs)have garnered significant interest in bone tissue engineering(BTE)because of their abundant availability,minimally invasive harvesting procedures,and robust differentiation potential into osteogenic lineages.Unlike bone marrow-derived mesenchymal stem cells,AD-MSCs can be easily obtained in large quantities,making them appealing alternatives for therapeutic applications.This review explores hydrogels containing polymers,such as chitosan,collagen,gelatin,and hyaluronic acid,and their composites,tailored for BTE,and emphasizes the importance of these hydrogels as scaffolds for the delivery of AD-MSCs.Various hydrogel fabrication techniques and biocompatibility assessments are discussed,along with innovative modifications to enhance osteogenesis.This review also briefly outlines AD-MSC isolation methods and advanced embedding techniques for precise cell placement,such as direct encapsulation and three-dimensional bioprinting.We discuss the mechanisms of bone regeneration in the AD-MSC-laden hydrogels,including osteoinduction,vascularization,and extracellular matrix remodeling.We also review the preclinical and clinical applications of AD-MSC-hydrogel systems,emphasizing their success and limitations.In this review,we provide a comprehensive overview of AD-MSC-based hydrogel systems to guide the development of effective therapies for bone regeneration.
基金supported by the National Natural Science Foundation of China(No.52475580)the Special Foundation of the Taishan Scholar Project(No.tsqn202211077)+3 种基金the Shandong Provincial Natural Science Foundation(No.ZR2023ME118)the Open Project of State Key Laboratory of Chemical Safety(No.SKLCS-2024020)the Fundamental Research Funds for the Central Universities(No.24CX02014A)the Fund of State Key Laboratory of Deep Oil and Gas,China University of Petroleum(East China).
文摘In the context of the rapid development of artificial intelligence and robotics,their application scenarios are continuously expanding to a variety of complex environments,with increasing attention being paid to the use of flexible sensors in lowtemperature environments.In this study,an ionic hydrogel was synthesized using acrylamide(AM),hydroxyethyl cellulose(HEC),and lithium chloride(LiCl)as composites.This hydrogel exhibits high adhesion,excellent sensitivity(gauge factor(GF)=2.84),rapid response time(100 ms),exceptional stretch ability(>1776%),high toughness(2.5 MJ/m^(3)),and the ability to maintain detectability at low temperatures(-60℃).HEC imparts reliable mechanical properties to the sensor through hydrogen bonding interactions of its hydroxyl groups.LiCl ensures that the sensor has outstanding antifreezing properties,maintains good conductivity and mechanical performance.Used for robotic attitude detection,the sensor demonstrated accurate recognition of various joint movements at both 20 and -20℃.This technology was extended to industrial operations and maintenance,where a mechanical claw was used to grasp parts at both room temperature and low temperature.A convolutional neural network deep learning algorithm was employed to identify and classify eight types of parts,achieving an impressive recognition accuracy of 98.8%.The polyacrylamide(PAM)/HEC/LiCl hydrogel sensor demonstrates the capability for wide-temperature range detection in flexible robotics,holding significant potential for future applications in human-machine interaction,tactile perception,and related fields.
基金supported by National Natural Science Foundation of China(22209036,U23A20119)Hebei Provincial Natural Science Foundation,Excellent Youth Project(E2023202069)+1 种基金National Key R&D Program of China(2024YFF0506000,2024YFB4609100)Fundamental Research Foundation from Hebei University of Technology(424132016,282021485).
文摘Solar-driven interfacial desalination(SID)offers a sustainable route for freshwater production,yet its long-term performance is compromised by salt crystallization and microbial fouling under complex marine conditions.Zwitterionic polymers offer promising nonfouling capabilities,but current zwitterionic hydrogel-based solar evaporators(HSEs)suffer from inadequate hydration and salt vulnerability.Inspired by the natural marine environmental adaptive characteristics of saltwater fish,we report a superhydrated zwitterionic poly(trimethylamine N-oxide,PTMAO)/polyacrylamide(PAAm)/polypyrrole(PPy)hydrogel(PTAP)with dedicated water channels for efficient,durable,and nonfouling SID.The directly linked N⁺and O⁻groups in PTMAO establish a robust hydration shell that facilitates rapid water transport while resisting salt and microbial adhesion.Integrated PAAm and PPy networks enhance mechanical strength and photothermal conversion.PTAP achieves a high evaporation rate of 2.35 kg m^(−2)h^(−1)under 1 kW m^(–2)in 10 wt%NaCl solution,maintaining stable operation over 100 h without salt accumulation.Furthermore,PTAP effectively resists various foulants including proteins,bacterial,and algal adhesion.Molecular dynamics simulations reveal that the exceptional hydration capacity supports its nonfouling properties.This work advances the development of nonfouling HSEs for sustainable solar desalination in real-world marine environments.
基金supported by the National Natural Science Foundation of China(Nos.32300413 and 32371563)the Natural Science Basic Research Program of Shaanxi Province(No.2023-JCQN-0206)+1 种基金the Shaanxi Fundamental Science Research Project for Chemistry&Biology(No.22JHQ037)the National Key R&D Program of China(No.2024YFF1307302).
文摘Diabetic wound healing remains a major clinical challenge,primarily due to excessive inflammation,bacterial infection,and impaired angiogenesis.Although various biomaterial-based strategies have been explored,coordinating the complex diabetic wound microenvironment remains difficult to achieve.This study proposes a novel multifunctional hydrogel dressing designed to synergistically address multiple issues.Its key innovation lies in dynamically crosslinking deer antler decellularized matrix(dECM)with oxidized dextran via imine bonds,creating a self-healing hydrogel(dECMH).The deer antler dECM,rich in pro-regenerative components,provides a biomimetic scaffold,while Schiff base crosslinking confers mechanical self-healing and injectability.To further address the complexity of diabetic wounds,magnesium gallate metalorganic frameworks(Mg-EGCG)were embedded within the dECMH network,forming Mg-EGCG@dECMH.This innovative combination enables sustained co-delivery of epigallocatechin gallate(EGCG)—possessing antibacterial,anti-inflammatory,and antioxidant properties—alongside magnesium ions that actively promote cell proliferation and vascular regeneration.In vitro analyses confirmed the hydrogel's capacity to enhance endothelial cell proliferation,boost angiogenesis,and mitigate oxidative stress.In vivo evaluations demonstrated accelerated wound healing,manifested by rapid inflammation resolution,ordered collagen deposition,and stimulated neovascularization.Additionally,the material exhibited excellent biocompatibility,hemostatic effects,and antimicrobial activity.This multifunctional dressing synergistically integrates the inherent bioactivity of unique antler decellularized matrix with the multimodal therapeutic effects of metal-organic nanocomposites,offering an innovative and effective strategy for diabetic wound management.
基金the financial support from the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB0470303)the National Key Research and Development Program of China (2022YFB4600101)+5 种基金the National Natural Science Foundation of China (52175201)the Research Program of Science and Technology Department of Gansu Province (24JRRA059, 24JRRA044, and 24YFFA014)the Science Fund of Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai (AMGM2024F12)the Major Program (ZYFZFX-2) of the Lanzhou Institute of Chemical Physics, CASthe Special Research Assistant Project of the Chinese Academy of Sciencesthe Oasis Scholar of Shihezi University
文摘Octopuses,due to their flexible arms,marvelous adaptability,and powerful suckers,are able to effortlessly grasp and disengage various objects in the marine surrounding without causing devastation.However,manipulating delicate objects such as soft and fragile foods underwater require gentle contact and stable adhesion,which poses a serious challenge to now available soft grippers.Inspired by the sucker infundibulum structure and flexible tentacles of octopus,herein we developed a hydraulically actuated hydrogel soft gripper with adaptive maneuverability by coupling multiple hydrogen bond-mediated supramolecular hydrogels and vat polymerization three-dimensional printing,in which hydrogel bionic sucker is composed of a tunable curvature membrane,a negative pressure cavity,and a pneumatic chamber.The design of the sucker structure with the alterable curvature membrane is conducive to realize the reliable and gentle switchable adhesion of the hydrogel soft gripper.As a proof-of-concept,the adaptive hydrogel soft gripper is capable of implement diversified underwater tasks,including gingerly grasping fragile foods like egg yolks and tofu,as well as underwater robots and vehicles that station-keeping and crawling based on switchable adhesion.This study therefore provides a transformative strategy for the design of novel soft grippers that will render promising utilities for underwater exploration soft robotics.
基金financially supported by the National Natural Science Foundation of China(No.52073214)Guangxi Natural Science Fund for Distinguished Young Scholars(No.2024GXNSFFA010008).
文摘The operational efficiency of membrane electrode assemblies in direct liquid fuel cells is critically dependent on the fuel purity in the anode compartment.To address the inherent challenge of fuel mixing problem in alcohol systems,we propose a rational catalyst design strategy focusing on morphological and compositional optimization.Sodium borohydride-derived PtCuMo alloy aerogels(AA)exhibit abundant grain boundary defects,while solvothermally prepared nanowire arrays(NA)maintain excellent single-crystalline characteristics.Density functional theory calculations demonstrate that engineered grain boundaries can effectively broaden the adsorption energy window for key reaction intermediates,enabling superior adaptability to diverse catalytic pathways.By precisely controlling Cu content,we identified Pt_(3)Cu_(3)Mo_(0.5)AA as the optimal catalyst configuration,demonstrating 150% enhancement in methanol oxidation reaction activity compared to Pt_(3)Cu_(6)Mo_(0.5)NA(1.5 vs.0.6 A·mg_(Pt)^(-1))and 17% improvement in ethanol oxidation reaction performance versus Pt_(3)Cu_(1)Mo_(0.5)NA(0.82 vs.0.70 A·mg_(Pt)^(-1)).Practical application testing using gas diffusion electrodes(anode loading:0.85 mg_(Pt)·cm^(-2))achieved a mass-specific power density of 14.14 W·g_(Pt)^(-1)in 1:1 methanol/ethanol blends,representing a 3.5-fold improvement over commercial Pt/C benchmarks.This work establishes a fundamental framework for developing highperformance,broad-spectrum electrocatalysts in advanced fuel cell systems.