The global demand for renewable and sustainable non-petroleum-based resources is rapidly increasing.Lignocellulosic biomass is a valuable resource with broad potential for nanocellulose(NC)production.However,limited s...The global demand for renewable and sustainable non-petroleum-based resources is rapidly increasing.Lignocellulosic biomass is a valuable resource with broad potential for nanocellulose(NC)production.However,limited studies are available regarding the potential toxicological impact of NC.We provide an overview of the nanosafety implications associated mainly with nanofibrillated cellulose(CNF)and identify knowledge gaps.For this purpose,we present an analysis of the studies published from 2014 to 2025 in which the authors mention aspects related to toxicity in the context of packaging.We also analyze the main methods used for toxicity evaluations and the main studies about toxicity evaluation using different biomarkers for a broad interpretation.This comprehensive biblio-graphic review highlights the critical need for further research to elucidate the mechanisms fully underlining NC toxicity,mainly due to its nanofibrillar structure.We focus on the cellular responses across different evaluated cell types through in vitro evaluation,always within the context of the dose used,the type of material or its source,and the type of biomarkers used in the assessments.The importance of addressing safety considerations and key knowledge gaps for the responsible use of CNF derived fromlignocellulosic biomass and its bionanocomposites in food packaging is highlighted.展开更多
Cellulose frameworks have emerged as promising materials for light management due to their exceptional light-scattering capabilities and sustainable nature.Conventional biomass-derived cellulose frameworks face a fund...Cellulose frameworks have emerged as promising materials for light management due to their exceptional light-scattering capabilities and sustainable nature.Conventional biomass-derived cellulose frameworks face a fundamental trade-off between haze and transparency,coupled with impractical thicknesses(≥1 mm).Inspired by squid’s skin-peeling mechanism,this work develops a peroxyformic acid(HCOOOH)-enabled precision peeling strategy to isolate intact 10-μm-thick bamboo green(BG)frameworks—100×thinner than wood-based counterparts while achieving an unprecedented optical performance(88%haze with 80%transparency).This performance surpasses delignified biomass(transparency<40%at 1 mm)and matches engineered cellulose composites,yet requires no energy-intensive nanofibrillation.The preserved native cellulose I crystalline structure(64.76%crystallinity)and wax-coated uniaxial fibril alignment(Hermans factor:0.23)contribute to high mechanical strength(903 MPa modulus)and broadband light scattering.As a light-management layer in polycrystalline silicon solar cells,the BG framework boosts photoelectric conversion efficiency by 0.41%absolute(18.74%→19.15%),outperforming synthetic anti-reflective coatings.The work establishes a scalable,waste-to-wealth route for optical-grade cellulose materials in next-generation optoelectronics.展开更多
Under the background of the current energy crisis and environmental pollution,the development of green and sustainable materials has become particularly urgent.As one of the most abundant natural polymers on earth,cel...Under the background of the current energy crisis and environmental pollution,the development of green and sustainable materials has become particularly urgent.As one of the most abundant natural polymers on earth,cellulose has attracted wide attention due to its green recycling,sustainable development,degradability,and low cost.Therefore,cellulose and its derivatives were used as the starting point for comprehensive analysis.First,the basic structural properties of cellulose were discussed,and then the extraction and utilization methods of cellulose were reviewed,including Sodium Hydroxide based solvent system,N,N-Dimethylacetamide/Lithium Chloride System,N-Methylmorpholine-N-Oxide(NMMO)system,ionic liquids(ILs)system,and deep eutectic solvent(DES)system.Then,the functional modification techniques of cellulose are introduced,including nano-modification,small molecule modification,and macromolecular modification.Finally,the potential applications of cellulose in the fields of reinforcement materials,self-healing materials,radioactive cooling,nanogenerators,and biomedicine were discussed.At the end of this paper,the challenges and future development direction of cellulose materials are prospectively analyzed,aiming at providing guidance and inspiration for the research and application in related fields.展开更多
基金funded by General Secretariat of Science and Technology,National University of Misiones(SGCyT-UNaM),grant number:16/Q2384-PI.
文摘The global demand for renewable and sustainable non-petroleum-based resources is rapidly increasing.Lignocellulosic biomass is a valuable resource with broad potential for nanocellulose(NC)production.However,limited studies are available regarding the potential toxicological impact of NC.We provide an overview of the nanosafety implications associated mainly with nanofibrillated cellulose(CNF)and identify knowledge gaps.For this purpose,we present an analysis of the studies published from 2014 to 2025 in which the authors mention aspects related to toxicity in the context of packaging.We also analyze the main methods used for toxicity evaluations and the main studies about toxicity evaluation using different biomarkers for a broad interpretation.This comprehensive biblio-graphic review highlights the critical need for further research to elucidate the mechanisms fully underlining NC toxicity,mainly due to its nanofibrillar structure.We focus on the cellular responses across different evaluated cell types through in vitro evaluation,always within the context of the dose used,the type of material or its source,and the type of biomarkers used in the assessments.The importance of addressing safety considerations and key knowledge gaps for the responsible use of CNF derived fromlignocellulosic biomass and its bionanocomposites in food packaging is highlighted.
基金supported by National Natural Science Foundation of China(32494793).
文摘Cellulose frameworks have emerged as promising materials for light management due to their exceptional light-scattering capabilities and sustainable nature.Conventional biomass-derived cellulose frameworks face a fundamental trade-off between haze and transparency,coupled with impractical thicknesses(≥1 mm).Inspired by squid’s skin-peeling mechanism,this work develops a peroxyformic acid(HCOOOH)-enabled precision peeling strategy to isolate intact 10-μm-thick bamboo green(BG)frameworks—100×thinner than wood-based counterparts while achieving an unprecedented optical performance(88%haze with 80%transparency).This performance surpasses delignified biomass(transparency<40%at 1 mm)and matches engineered cellulose composites,yet requires no energy-intensive nanofibrillation.The preserved native cellulose I crystalline structure(64.76%crystallinity)and wax-coated uniaxial fibril alignment(Hermans factor:0.23)contribute to high mechanical strength(903 MPa modulus)and broadband light scattering.As a light-management layer in polycrystalline silicon solar cells,the BG framework boosts photoelectric conversion efficiency by 0.41%absolute(18.74%→19.15%),outperforming synthetic anti-reflective coatings.The work establishes a scalable,waste-to-wealth route for optical-grade cellulose materials in next-generation optoelectronics.
基金supported by Research Fund for the Doctoral Program of Higher Education of China(20134420120009)Science and Technology Planning Project of Guangdong(2014A010105047)Science and Technology Planning Project of Guangzhou City(201707010367).
文摘Under the background of the current energy crisis and environmental pollution,the development of green and sustainable materials has become particularly urgent.As one of the most abundant natural polymers on earth,cellulose has attracted wide attention due to its green recycling,sustainable development,degradability,and low cost.Therefore,cellulose and its derivatives were used as the starting point for comprehensive analysis.First,the basic structural properties of cellulose were discussed,and then the extraction and utilization methods of cellulose were reviewed,including Sodium Hydroxide based solvent system,N,N-Dimethylacetamide/Lithium Chloride System,N-Methylmorpholine-N-Oxide(NMMO)system,ionic liquids(ILs)system,and deep eutectic solvent(DES)system.Then,the functional modification techniques of cellulose are introduced,including nano-modification,small molecule modification,and macromolecular modification.Finally,the potential applications of cellulose in the fields of reinforcement materials,self-healing materials,radioactive cooling,nanogenerators,and biomedicine were discussed.At the end of this paper,the challenges and future development direction of cellulose materials are prospectively analyzed,aiming at providing guidance and inspiration for the research and application in related fields.