In this study,we proposed a novel and efficient way to strengthen polyvinyl alcohol(PVA)fiber using graphene quantum dots(GQDs).PVA molecular chains were grafted onto the surface of GQDs through Friedel-Crafts alkylat...In this study,we proposed a novel and efficient way to strengthen polyvinyl alcohol(PVA)fiber using graphene quantum dots(GQDs).PVA molecular chains were grafted onto the surface of GQDs through Friedel-Crafts alkylation reaction to obtain functionalized GQDs(f-GQDs),and PVA/f-GQDs composite fiber was successfully prepared by wet spinning and post-treatment.The tensile strength and Young's modulus of the composite fiber reached up to 1229.24 MPa and 35.36 GPa which were approximately twice and 4 times those of the pure PVA fiber,respectively.Moreover,the composite fiber was demonstrated excellent resistance to solvents.In addition,the PVA/f-GQDs composite fiber showed intense and uniform cyan fluorescence,meanwhile,it could maintain stable solid-state fluorescence in acid and alkali solutions and particularly after long-term immersion in water(1 month).This study proposes a promising route for obtaining high-performance conventional fibers with some new functions.展开更多
基金supported by the National Key Research and Development Program of China(No.2017YFB0309401)State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials of Soochow University。
文摘In this study,we proposed a novel and efficient way to strengthen polyvinyl alcohol(PVA)fiber using graphene quantum dots(GQDs).PVA molecular chains were grafted onto the surface of GQDs through Friedel-Crafts alkylation reaction to obtain functionalized GQDs(f-GQDs),and PVA/f-GQDs composite fiber was successfully prepared by wet spinning and post-treatment.The tensile strength and Young's modulus of the composite fiber reached up to 1229.24 MPa and 35.36 GPa which were approximately twice and 4 times those of the pure PVA fiber,respectively.Moreover,the composite fiber was demonstrated excellent resistance to solvents.In addition,the PVA/f-GQDs composite fiber showed intense and uniform cyan fluorescence,meanwhile,it could maintain stable solid-state fluorescence in acid and alkali solutions and particularly after long-term immersion in water(1 month).This study proposes a promising route for obtaining high-performance conventional fibers with some new functions.