Metal-organic frameworks(MOFs)are import-ant as possible energy storage materials.Nitrogen-doped iron-cobalt MOFs were synthesized by a one-pot solvo-thermal method using CoCl_(3)·6H_(2)O and FeCl_(3)·6H_(2)...Metal-organic frameworks(MOFs)are import-ant as possible energy storage materials.Nitrogen-doped iron-cobalt MOFs were synthesized by a one-pot solvo-thermal method using CoCl_(3)·6H_(2)O and FeCl_(3)·6H_(2)O dis-solved in N,N-dimethylformamide,and were converted into Fe-Co embedded in N-doped porous carbon polyhedra by pyrolysis in a nitrogen atmosphere.During pyrolysis,the or-ganic ligands transformed into N-doped porous carbon which improved their structural stability and also their electrical contact with other materials.The Fe and Co are tightly bound together because of their encapsulation by the carbon nitride and are well dispersed in the carbon matrix,and improve the material’s conductivity and stability and provide additional capacity.When used as the anode for lithium-ion batteries,the material gives an initial capacity of up to 2230.7 mAh g^(-1)and a reversible capa-city of 1146.3 mAh g^(-1)is retained after 500 cycles at a current density of 0.5 A g^(-1),making it an excellent candidate for this purpose.展开更多
文摘Metal-organic frameworks(MOFs)are import-ant as possible energy storage materials.Nitrogen-doped iron-cobalt MOFs were synthesized by a one-pot solvo-thermal method using CoCl_(3)·6H_(2)O and FeCl_(3)·6H_(2)O dis-solved in N,N-dimethylformamide,and were converted into Fe-Co embedded in N-doped porous carbon polyhedra by pyrolysis in a nitrogen atmosphere.During pyrolysis,the or-ganic ligands transformed into N-doped porous carbon which improved their structural stability and also their electrical contact with other materials.The Fe and Co are tightly bound together because of their encapsulation by the carbon nitride and are well dispersed in the carbon matrix,and improve the material’s conductivity and stability and provide additional capacity.When used as the anode for lithium-ion batteries,the material gives an initial capacity of up to 2230.7 mAh g^(-1)and a reversible capa-city of 1146.3 mAh g^(-1)is retained after 500 cycles at a current density of 0.5 A g^(-1),making it an excellent candidate for this purpose.