Utilizing phosphorus tailings as the raw material for foam concrete is a key approach to achieving sustainable and efficient resource utilization.During the preparation of phosphorus tailings-based foam concrete,slurr...Utilizing phosphorus tailings as the raw material for foam concrete is a key approach to achieving sustainable and efficient resource utilization.During the preparation of phosphorus tailings-based foam concrete,slurry performance is critical to the successful production.Phosphorus tailings,cement and microsilica were used to prepare foam concrete slurry in this study.A rheometer was employed as a test tool to measure the variation of linear viscoelastic zone(LVR),viscosity,and yield stress of the slurries with different cement contents.The results indicate that the phosphorus tailings-cement-microsilica slurry exhibits shear-thinning properties,which aligns well with the Herschel-Bulkley model,showing a high degree of correlation.As the cement content increases,the energy storage modulus of the slurry rises,and the LVR length shows a nonlinear trend.The LVR reaches its maximum length of 0.04%when the cement content is 6 mass%or 8 mass%.The increment of the cement content leads to a more intricate internal network structure,which hinders the reconstruction rate of the flocculated structure after high-shear deformation.展开更多
High-performance alumina-magnesia castables were developed with the addition of nano-CacO_(3) and nano-hydromagnesite.To further understand their dynamic failure mechanism,the quantitative investigation via the employ...High-performance alumina-magnesia castables were developed with the addition of nano-CacO_(3) and nano-hydromagnesite.To further understand their dynamic failure mechanism,the quantitative investigation via the employment of the Split-Hopkinson pressure bar(SHPB)method was adopted to test the dynamic failure behavior of alumina-magnesia castables under various impact velocities.The results demonstrate that the greater the impact velocity,the more intense the sample damage.The dynamic compressive stress,the ultimate strain,and the strain energy of all samples display a strain rate hardening effect,and this phenomenon is more conspicuous in the samples incorporating nano-additives.The nano-additives show a positive influence on the dynamic mechanical properties of the castables.展开更多
基金Hubei Provincial Key Research Program Project(2023BCB099).
文摘Utilizing phosphorus tailings as the raw material for foam concrete is a key approach to achieving sustainable and efficient resource utilization.During the preparation of phosphorus tailings-based foam concrete,slurry performance is critical to the successful production.Phosphorus tailings,cement and microsilica were used to prepare foam concrete slurry in this study.A rheometer was employed as a test tool to measure the variation of linear viscoelastic zone(LVR),viscosity,and yield stress of the slurries with different cement contents.The results indicate that the phosphorus tailings-cement-microsilica slurry exhibits shear-thinning properties,which aligns well with the Herschel-Bulkley model,showing a high degree of correlation.As the cement content increases,the energy storage modulus of the slurry rises,and the LVR length shows a nonlinear trend.The LVR reaches its maximum length of 0.04%when the cement content is 6 mass%or 8 mass%.The increment of the cement content leads to a more intricate internal network structure,which hinders the reconstruction rate of the flocculated structure after high-shear deformation.
基金National Natural Science Foundation of China(52472303 and 52304356).
文摘High-performance alumina-magnesia castables were developed with the addition of nano-CacO_(3) and nano-hydromagnesite.To further understand their dynamic failure mechanism,the quantitative investigation via the employment of the Split-Hopkinson pressure bar(SHPB)method was adopted to test the dynamic failure behavior of alumina-magnesia castables under various impact velocities.The results demonstrate that the greater the impact velocity,the more intense the sample damage.The dynamic compressive stress,the ultimate strain,and the strain energy of all samples display a strain rate hardening effect,and this phenomenon is more conspicuous in the samples incorporating nano-additives.The nano-additives show a positive influence on the dynamic mechanical properties of the castables.