Hazardous wastes from the production of cleaner fuels,spent hydrodesulfurization(HDS)catalysts,pose a threat to the environment and the sustainability of rare metal resources.However,conventional recovery approaches a...Hazardous wastes from the production of cleaner fuels,spent hydrodesulfurization(HDS)catalysts,pose a threat to the environment and the sustainability of rare metal resources.However,conventional recovery approaches are limited by long processes,easy generation of waste liquids,and difficult reuse of recovery products.Herein,a SiO_(2)-Na_(2)O-B_(2)O_(3)-MgO-TiO_(2)glass phase extraction system was proposed for the full-component recycle from spent MoNi/γ-Al_(2)O_(3)catalysts to the materials,including the individual recovery of Mo and the synthesis of Ni^(2+)-doped glass–ceramics.96.7%of Ni and 99.8%of Al were extracted into the loaded glass in one step,while 95.3%of Mo was precipitated as molybdate and directly recovered with high separation factors(SF_(Mo/Ni)594.8,SF_(Mo/Al)8718.2)in one step.Moreover,the broadband near-infrared luminescence(1150-1700 nm)of glass–ceramics was triggered by Ni^(2+)in the octahedral crystal structure of Me_(3)O_(5)(Me=Mg,Al,Ti)by meltingannealing-crystallization processes,which provided it the potential to be applied in tunable lasers and broadband optical amplifiers for the wavelength-division-multiplexing transmission systems.The Ni^(2+)-doping mechanism was calculated using molecular dynamics simulations.This work emphasized the maximization of the reuse value for each metal resource from hazardous wastes while reducing the burden on the environment and achieving the recycling of rare metal resources with re-valorization.展开更多
Iron phosphate based glass-ceramics with deliberately added Ce as an active nuclide simulant were prepared by microwave sintering.The sintering characteristics,including phases and structural evolution,and chemical du...Iron phosphate based glass-ceramics with deliberately added Ce as an active nuclide simulant were prepared by microwave sintering.The sintering characteristics,including phases and structural evolution,and chemical durability were investigated.XRD showed that NaZr_(2)(PO_(4))_(3) and FePO_(4) became the main crystalline phases of glass-ceramics with increasing sintering temperature.SEM revealed the glass-ceramics compactness increased first and then decreased as sintering temperature increased.Raman spectrum showed that,as sintering temperature increased,the network structure of glass-ceramics changed from mainly containing orthophosphate and pyrophosphate to a single orthophosphate.After immersion for 28 days,LR_(Na),LR_(Zr) and LR_(Ce) of the glass-ceramics prepared at 1000℃ were as low as 3.64×10^(-5),0.25×10^(-9) and 5.70×10^(-9)g/m^(2)/d respectively.The results indicate that iron phosphate based glass-ceramics can be prepared by rapid microwave sintering of glass powders and there is a potential of employing such microwave sintering technique in processing of glass-ceramics nuclear waste form.展开更多
The scintillating photonic glass has the great potential for medicine imaging,nuclear physics,highenergy physics,and national defense.However,the development of the candidate with the high density remains a significan...The scintillating photonic glass has the great potential for medicine imaging,nuclear physics,highenergy physics,and national defense.However,the development of the candidate with the high density remains a significant challenge.Herein,the superdense scintillating glasses derived from the Ce^(3+)-activated Lu_(2)O_(3)-SiO_(2)binary system were successfully fabricated by the strategy of contactless aerodynamic levitation heating under the N_(2)atmosphere.These glasses are colorless,optical homogeneous,and exhibit superdense density from 6.59 to 7.15 g/cm^(3),representing the highest density among the fast decay glass systems.The materials present excellent radiation-blocking ability,suitable emission wavelength,and fast response,indicating the promise for fast-eve nt X-ray detection.The micro radiation probe was fabricated by connecting the scintillating glass and the optical fiber.The practical application in remote radiation detection is demonstrated and it exhibits excellent linear response and high signalto-noise ratio.The results confirm that the fabricated superdense scintillating glass is promising for application in the field of high-energy radiation detection.展开更多
基金financially supported by the National Natural Science Foundation of China for Distinguished Young Scholar(No.52025042)。
文摘Hazardous wastes from the production of cleaner fuels,spent hydrodesulfurization(HDS)catalysts,pose a threat to the environment and the sustainability of rare metal resources.However,conventional recovery approaches are limited by long processes,easy generation of waste liquids,and difficult reuse of recovery products.Herein,a SiO_(2)-Na_(2)O-B_(2)O_(3)-MgO-TiO_(2)glass phase extraction system was proposed for the full-component recycle from spent MoNi/γ-Al_(2)O_(3)catalysts to the materials,including the individual recovery of Mo and the synthesis of Ni^(2+)-doped glass–ceramics.96.7%of Ni and 99.8%of Al were extracted into the loaded glass in one step,while 95.3%of Mo was precipitated as molybdate and directly recovered with high separation factors(SF_(Mo/Ni)594.8,SF_(Mo/Al)8718.2)in one step.Moreover,the broadband near-infrared luminescence(1150-1700 nm)of glass–ceramics was triggered by Ni^(2+)in the octahedral crystal structure of Me_(3)O_(5)(Me=Mg,Al,Ti)by meltingannealing-crystallization processes,which provided it the potential to be applied in tunable lasers and broadband optical amplifiers for the wavelength-division-multiplexing transmission systems.The Ni^(2+)-doping mechanism was calculated using molecular dynamics simulations.This work emphasized the maximization of the reuse value for each metal resource from hazardous wastes while reducing the burden on the environment and achieving the recycling of rare metal resources with re-valorization.
基金Funded by the Key Research and Development Projects of Anhui Province(No.2022a05020026)the Key Technologies R&D Program of CNBM(Nos.2021HX0809,2021HX1011)the Anhui Science and Technology Major Project(No.2021e03020009)。
文摘Iron phosphate based glass-ceramics with deliberately added Ce as an active nuclide simulant were prepared by microwave sintering.The sintering characteristics,including phases and structural evolution,and chemical durability were investigated.XRD showed that NaZr_(2)(PO_(4))_(3) and FePO_(4) became the main crystalline phases of glass-ceramics with increasing sintering temperature.SEM revealed the glass-ceramics compactness increased first and then decreased as sintering temperature increased.Raman spectrum showed that,as sintering temperature increased,the network structure of glass-ceramics changed from mainly containing orthophosphate and pyrophosphate to a single orthophosphate.After immersion for 28 days,LR_(Na),LR_(Zr) and LR_(Ce) of the glass-ceramics prepared at 1000℃ were as low as 3.64×10^(-5),0.25×10^(-9) and 5.70×10^(-9)g/m^(2)/d respectively.The results indicate that iron phosphate based glass-ceramics can be prepared by rapid microwave sintering of glass powders and there is a potential of employing such microwave sintering technique in processing of glass-ceramics nuclear waste form.
基金supported by the National Science Fund for Distinguished Young Scholars(62125502)the National Natural Science Foundation of China(52302002,62305115)Guangdong Basic and Applied Basic Research Foundation(2024A1515011827)。
文摘The scintillating photonic glass has the great potential for medicine imaging,nuclear physics,highenergy physics,and national defense.However,the development of the candidate with the high density remains a significant challenge.Herein,the superdense scintillating glasses derived from the Ce^(3+)-activated Lu_(2)O_(3)-SiO_(2)binary system were successfully fabricated by the strategy of contactless aerodynamic levitation heating under the N_(2)atmosphere.These glasses are colorless,optical homogeneous,and exhibit superdense density from 6.59 to 7.15 g/cm^(3),representing the highest density among the fast decay glass systems.The materials present excellent radiation-blocking ability,suitable emission wavelength,and fast response,indicating the promise for fast-eve nt X-ray detection.The micro radiation probe was fabricated by connecting the scintillating glass and the optical fiber.The practical application in remote radiation detection is demonstrated and it exhibits excellent linear response and high signalto-noise ratio.The results confirm that the fabricated superdense scintillating glass is promising for application in the field of high-energy radiation detection.