Layered vanadium oxides are desired cathode materials due to their multielectron redox reactions.However,their further development has been limited by the low electrical conductivity and unstable crystal structure.Her...Layered vanadium oxides are desired cathode materials due to their multielectron redox reactions.However,their further development has been limited by the low electrical conductivity and unstable crystal structure.Herein,we synthesize V_(2)O_(5)microspheres with oxygen-rich vacancies by Mo doping strategy.The oxygen vacancies provide preferential adsorption sites for Zn ions,thereby decreasing the ionic migration barrier within the host framework.The Zn//Mo-V_(2)O_(5)batteries achieve a specific capacity of 502.5 mAh·g^(-1)at 0.2 A·g^(-1)and retain 433.2 mAh·g^(-1)after 100 times cycling.Moreover,they possess 2000 times cycling life with a retention rate of 100% at a low temperature of 0℃(1 A·g^(-1)).It is believed that the reliable Mo-doping approach will provide new insights for high-performance energy storage systems.展开更多
基金the National Natural Science Foundation of China(No.52472227).
文摘Layered vanadium oxides are desired cathode materials due to their multielectron redox reactions.However,their further development has been limited by the low electrical conductivity and unstable crystal structure.Herein,we synthesize V_(2)O_(5)microspheres with oxygen-rich vacancies by Mo doping strategy.The oxygen vacancies provide preferential adsorption sites for Zn ions,thereby decreasing the ionic migration barrier within the host framework.The Zn//Mo-V_(2)O_(5)batteries achieve a specific capacity of 502.5 mAh·g^(-1)at 0.2 A·g^(-1)and retain 433.2 mAh·g^(-1)after 100 times cycling.Moreover,they possess 2000 times cycling life with a retention rate of 100% at a low temperature of 0℃(1 A·g^(-1)).It is believed that the reliable Mo-doping approach will provide new insights for high-performance energy storage systems.