Iron(Fe)nanoparticles and graphite(Gr)with different masses of bismuth trisulfide(Bi_(2)S_(3))were mixed by high-energy ball milling treatment to fabricate the corresponding composite iron anodes Bi_(2)S_(3)@Fe-Gr.The...Iron(Fe)nanoparticles and graphite(Gr)with different masses of bismuth trisulfide(Bi_(2)S_(3))were mixed by high-energy ball milling treatment to fabricate the corresponding composite iron anodes Bi_(2)S_(3)@Fe-Gr.The hydrogen evolution reaction and iron passivation process on these iron electrodes were investigated in alkaline and neutral solutions.The iron electrode Bi_(2)S_(3)-3@Fe-Gr(The additional amount of Bi_(2)S_(3)was 3 mg)revealed the strongest ability to inhibit hydrogen evolution among the iron electrodes of the present investigation,while the Bi_(2)S_(3)-6@Fe-Gr electrode(The additional amount of Bi_(2)S_(3)was 6 mg)delivered significant performance in inhibiting anodic passivation.This is because the high-energy ball milling process leads to the well-dispersion of Bi_(2)S_(3)and the changes in the surface of Fe nanoparticles,thereby slowing down the passivation of the iron electrode surface.展开更多
The nanocrystalline samples Nd_(1-x)M_(x)FeO_(3)(x=0.0 and 0.1;M:Co^(2+)and Ni^(2+))were prepared using the citrate combustion method.The X-ray diffraction(XRD)pattern confirmed that the nanoparticles were synthesized...The nanocrystalline samples Nd_(1-x)M_(x)FeO_(3)(x=0.0 and 0.1;M:Co^(2+)and Ni^(2+))were prepared using the citrate combustion method.The X-ray diffraction(XRD)pattern confirmed that the nanoparticles were synthesized in an orthorhombic structure.The particle size of Nd_(1-x)M_(x)FeO_(3) is in the range of 29-59 nm.The selected area electron diffraction(SAED)indicates the samples were prepared in a polycrystalline nature.The samples Nd_(1-x)M_(x)FeO_(3)(x=0.0 and 0.1;M:Co^(2+)and Ni^(2+))have anti ferromagnetic behavior.The Fe^(3+)spins are aligned antiparallel,forming the antiferromagnetic(AFM)properties,which are affected by many factors such as the bond angle between the Fe^(3+)(Fe^(3+)-O_(2)--Fe^(3+))and the Dzyaloshinskii-Moriya(D-M)interaction.The doping of Co^(2+)and Ni^(2+)ions in NdFeO_(3) enhances the magnetic properties of the NdFeO_(3).The saturation magnetization(Ms)of Nd_(0.90)Co_(0.10)FeO_(3) increases 1.8times more than that of NdFeO_(3).The exchange bias field(HEX)of the Co-doped sample is two times greater than that of NdFeO_(3).The magnetic anisotropy constant(K)of the 10%Co-doped sample increases by 11 factors compared to that of NdFeO_(3).The Tauc plot illustrates that the samples have a direct optical transition.The divalent cation substitution(Co^(2+)and Ni^(2+))decreases the optical band gap of NdFeO_(3),leading to the recommendation of using the samples Nd_(0.90)Co_(0.10)FeO_(3) and Nd_(0.90)Ni_(0.10)FeO_(3) in photocatalysis of dye degradation from water.The removal efficiencies of Cr6+at pH=6 are 88.06%,85.54%,and 85.52%for the samples NdFeO_(3),Nd_(0.90)Co_(0.10)FeO_(3),and Nd_(0.90)Ni_(0.10)FeO_(3),respectively.The Freundlich isotherm mode is the best-fit model for NdFeO_(3) to adsorb Cr6+ions from aqueous solutions.展开更多
Thanks to its abundant reserves,relatively high energy density,and low reduction potential,potassium ion batteries(PIBs)have a high potential for large-scale energy storage applications.Due to the large radius of pota...Thanks to its abundant reserves,relatively high energy density,and low reduction potential,potassium ion batteries(PIBs)have a high potential for large-scale energy storage applications.Due to the large radius of potassium ions,most conventional anode materials undergo severe volume expansion,making it difficult to achieve stable and reversible energy storage.Therefore,developing high-performance anode materials is one of the critical factors in developing PIBs.In this sense,antimony(Sb)-based anode materials with high theoretical capacity and safe reaction potentials have a broad potential for application in PIBs.However,overcoming the rapid capacity decay induced by the large radius of potassium ions is still an issue that needs to be focused on.This paper reviews the latest research on different types of Sb-based anode materials and provides an in-depth analysis of their optimization strategies.We focus on material selection,structural design,and storage mechanisms to develop a detailed description of the material.In addition,the current challenges still faced by Sb-based anode materials are summarized,and some further optimization strategies have been added.We hope to provide some insights for researchers developing Sb-based anode materials for next-generation advanced PIBs.展开更多
Vanadium nitride(VN)is a promising pseudocapacitive material due to the high theoretical capacity,rapid redox Faradaic kinetics,and appropriate potential window.Although VN shows large pseudocapacitance in alkaline el...Vanadium nitride(VN)is a promising pseudocapacitive material due to the high theoretical capacity,rapid redox Faradaic kinetics,and appropriate potential window.Although VN shows large pseudocapacitance in alkaline electrolytes,the electrochemical instability and capacity degradation of VN electrode materials present significant challenges for practical applications.Herein,the capacitance decay mechanism of VN is investigated and a simple strategy to improve cycling stability of VN supercapacitor electrodes is proposed by introducing VO_(4)^(3-)anion in KOH electrolytes.Our results show that the VN electrode is electrochemical stabilization between-1.0and-0.4 V(vs.Hg/Hg O reference electrode)in 1.0 MKOH electrolyte,but demonstrates irreversible oxidation and fast capacitance decay in the potential range of-0.4 to0 V.In situ electrochemical measurements reveal that the capacitance decay of VN from-0.4 to 0 V is ascribed to the irreversible oxidation of vanadium(V)of N–V–O species by oxygen(O)of OH^(-).The as-generated oxidization species are subsequently dissolved into KOH electrolytes,thereby undermining the electrochemical stability of VN.However,this irreversible oxidation process could be hindered by introducing VO_(4)^(3-)in KOH electrolytes.A high volumetric specific capacitance of671.9 F.cm^(-3)(1 A.cm^(-3))and excellent cycling stability(120.3%over 1000 cycles)are achieved for VN nanorod electrode in KOH electrolytes containing VO_(4)^(3-).This study not only elucidates the failure mechanism of VN supercapacitor electrodes in alkaline electrolytes,but also provides new insights into enhancing pseudocapacitive energy storage of VN-based electrode materials.展开更多
Ni-ion aqueous batteries(NIBs)were considered an important development direction for aqueous batteries due to the high theoretical capacity(913 mA h g^(-1))and volume capacity(8136 mA h cm^(-3))of nickel metal.Herein,...Ni-ion aqueous batteries(NIBs)were considered an important development direction for aqueous batteries due to the high theoretical capacity(913 mA h g^(-1))and volume capacity(8136 mA h cm^(-3))of nickel metal.Herein,an electrolyte additive(dodecyl trimethyl ammonium chloride,DTAC)was used to improve the electrolyte environment,achieve efficient transport of Ni-ion,and combine the intercalated vanadium oxide cathodes to realize novel strategy NIBs.Firstly,the introduction of trace amounts of DTAC improved the high-concentration NiCl_(2)(4.2 M)electrolyte environment and reconstructed the hydrogen bond network.Molecular dynamics(MD)calculations and electrochemical results indicated that DTAC contributed to the desolvation process of Ni^(2+)and the realization of fast dynamics.The results of Ni symmetric cells demonstrated that DTAC enhanced the rapid migration of Ni-ion and achieved longer cycling stability(1750/1500 h at 0.2/0.5 mA cm^(-2)without obvious short circuits).Secondly,the insertion of organic small molecules(pyrrolidine)into vanadium oxide(V_(2)O_(5))to expand the interlayer spacing promoted the Ni-ion storage capacity of the cathodes.The capacity retention rate of Ni full battery after 6000 cycles at 5 A g^(-1)reached 82.17%.This work provided a novel strategy for the development of Ni-ion aqueous batteries.展开更多
文摘Iron(Fe)nanoparticles and graphite(Gr)with different masses of bismuth trisulfide(Bi_(2)S_(3))were mixed by high-energy ball milling treatment to fabricate the corresponding composite iron anodes Bi_(2)S_(3)@Fe-Gr.The hydrogen evolution reaction and iron passivation process on these iron electrodes were investigated in alkaline and neutral solutions.The iron electrode Bi_(2)S_(3)-3@Fe-Gr(The additional amount of Bi_(2)S_(3)was 3 mg)revealed the strongest ability to inhibit hydrogen evolution among the iron electrodes of the present investigation,while the Bi_(2)S_(3)-6@Fe-Gr electrode(The additional amount of Bi_(2)S_(3)was 6 mg)delivered significant performance in inhibiting anodic passivation.This is because the high-energy ball milling process leads to the well-dispersion of Bi_(2)S_(3)and the changes in the surface of Fe nanoparticles,thereby slowing down the passivation of the iron electrode surface.
文摘The nanocrystalline samples Nd_(1-x)M_(x)FeO_(3)(x=0.0 and 0.1;M:Co^(2+)and Ni^(2+))were prepared using the citrate combustion method.The X-ray diffraction(XRD)pattern confirmed that the nanoparticles were synthesized in an orthorhombic structure.The particle size of Nd_(1-x)M_(x)FeO_(3) is in the range of 29-59 nm.The selected area electron diffraction(SAED)indicates the samples were prepared in a polycrystalline nature.The samples Nd_(1-x)M_(x)FeO_(3)(x=0.0 and 0.1;M:Co^(2+)and Ni^(2+))have anti ferromagnetic behavior.The Fe^(3+)spins are aligned antiparallel,forming the antiferromagnetic(AFM)properties,which are affected by many factors such as the bond angle between the Fe^(3+)(Fe^(3+)-O_(2)--Fe^(3+))and the Dzyaloshinskii-Moriya(D-M)interaction.The doping of Co^(2+)and Ni^(2+)ions in NdFeO_(3) enhances the magnetic properties of the NdFeO_(3).The saturation magnetization(Ms)of Nd_(0.90)Co_(0.10)FeO_(3) increases 1.8times more than that of NdFeO_(3).The exchange bias field(HEX)of the Co-doped sample is two times greater than that of NdFeO_(3).The magnetic anisotropy constant(K)of the 10%Co-doped sample increases by 11 factors compared to that of NdFeO_(3).The Tauc plot illustrates that the samples have a direct optical transition.The divalent cation substitution(Co^(2+)and Ni^(2+))decreases the optical band gap of NdFeO_(3),leading to the recommendation of using the samples Nd_(0.90)Co_(0.10)FeO_(3) and Nd_(0.90)Ni_(0.10)FeO_(3) in photocatalysis of dye degradation from water.The removal efficiencies of Cr6+at pH=6 are 88.06%,85.54%,and 85.52%for the samples NdFeO_(3),Nd_(0.90)Co_(0.10)FeO_(3),and Nd_(0.90)Ni_(0.10)FeO_(3),respectively.The Freundlich isotherm mode is the best-fit model for NdFeO_(3) to adsorb Cr6+ions from aqueous solutions.
基金financially supported by the National Natural Science Foundation of China(No.22209057)the Guangzhou Basic and Applied Basic Research Foundation(No.2024A04J0839)。
文摘Thanks to its abundant reserves,relatively high energy density,and low reduction potential,potassium ion batteries(PIBs)have a high potential for large-scale energy storage applications.Due to the large radius of potassium ions,most conventional anode materials undergo severe volume expansion,making it difficult to achieve stable and reversible energy storage.Therefore,developing high-performance anode materials is one of the critical factors in developing PIBs.In this sense,antimony(Sb)-based anode materials with high theoretical capacity and safe reaction potentials have a broad potential for application in PIBs.However,overcoming the rapid capacity decay induced by the large radius of potassium ions is still an issue that needs to be focused on.This paper reviews the latest research on different types of Sb-based anode materials and provides an in-depth analysis of their optimization strategies.We focus on material selection,structural design,and storage mechanisms to develop a detailed description of the material.In addition,the current challenges still faced by Sb-based anode materials are summarized,and some further optimization strategies have been added.We hope to provide some insights for researchers developing Sb-based anode materials for next-generation advanced PIBs.
基金financially supported by the National Natural Science Foundation of China(No.U2004210)Application Foundation Frontier Project of Wuhan Science and Technology Program(No.2020010601012199)City University of Hong Kong Strategic Research Grant,Hong Kong,China(No.7005505)。
文摘Vanadium nitride(VN)is a promising pseudocapacitive material due to the high theoretical capacity,rapid redox Faradaic kinetics,and appropriate potential window.Although VN shows large pseudocapacitance in alkaline electrolytes,the electrochemical instability and capacity degradation of VN electrode materials present significant challenges for practical applications.Herein,the capacitance decay mechanism of VN is investigated and a simple strategy to improve cycling stability of VN supercapacitor electrodes is proposed by introducing VO_(4)^(3-)anion in KOH electrolytes.Our results show that the VN electrode is electrochemical stabilization between-1.0and-0.4 V(vs.Hg/Hg O reference electrode)in 1.0 MKOH electrolyte,but demonstrates irreversible oxidation and fast capacitance decay in the potential range of-0.4 to0 V.In situ electrochemical measurements reveal that the capacitance decay of VN from-0.4 to 0 V is ascribed to the irreversible oxidation of vanadium(V)of N–V–O species by oxygen(O)of OH^(-).The as-generated oxidization species are subsequently dissolved into KOH electrolytes,thereby undermining the electrochemical stability of VN.However,this irreversible oxidation process could be hindered by introducing VO_(4)^(3-)in KOH electrolytes.A high volumetric specific capacitance of671.9 F.cm^(-3)(1 A.cm^(-3))and excellent cycling stability(120.3%over 1000 cycles)are achieved for VN nanorod electrode in KOH electrolytes containing VO_(4)^(3-).This study not only elucidates the failure mechanism of VN supercapacitor electrodes in alkaline electrolytes,but also provides new insights into enhancing pseudocapacitive energy storage of VN-based electrode materials.
基金financially supported by the National Natural Science Foundation of China(NSFC)(22171030 and 21771028)。
文摘Ni-ion aqueous batteries(NIBs)were considered an important development direction for aqueous batteries due to the high theoretical capacity(913 mA h g^(-1))and volume capacity(8136 mA h cm^(-3))of nickel metal.Herein,an electrolyte additive(dodecyl trimethyl ammonium chloride,DTAC)was used to improve the electrolyte environment,achieve efficient transport of Ni-ion,and combine the intercalated vanadium oxide cathodes to realize novel strategy NIBs.Firstly,the introduction of trace amounts of DTAC improved the high-concentration NiCl_(2)(4.2 M)electrolyte environment and reconstructed the hydrogen bond network.Molecular dynamics(MD)calculations and electrochemical results indicated that DTAC contributed to the desolvation process of Ni^(2+)and the realization of fast dynamics.The results of Ni symmetric cells demonstrated that DTAC enhanced the rapid migration of Ni-ion and achieved longer cycling stability(1750/1500 h at 0.2/0.5 mA cm^(-2)without obvious short circuits).Secondly,the insertion of organic small molecules(pyrrolidine)into vanadium oxide(V_(2)O_(5))to expand the interlayer spacing promoted the Ni-ion storage capacity of the cathodes.The capacity retention rate of Ni full battery after 6000 cycles at 5 A g^(-1)reached 82.17%.This work provided a novel strategy for the development of Ni-ion aqueous batteries.