通过施加超声强化受限撞击流反应器内共沉淀反应和结晶过程,优化氧化锆纳米颗粒制备过程。采用实验和数值模拟方法研究了超声空化效应和流体动力学因素对氧化锆纳米颗粒反应沉淀过程的协同作用,以及对所制备颗粒性能的影响。利用扫描电...通过施加超声强化受限撞击流反应器内共沉淀反应和结晶过程,优化氧化锆纳米颗粒制备过程。采用实验和数值模拟方法研究了超声空化效应和流体动力学因素对氧化锆纳米颗粒反应沉淀过程的协同作用,以及对所制备颗粒性能的影响。利用扫描电镜(scanning electron microscope,SEM)、X-射线衍射(X-ray diffraction,XRD)对有、无超声作用下制备颗粒的形貌、结构和粒度分布进行表征。结果表明,施加超声后,撞击流反应器撞击区域上方“三角区域”与出口侧方流动不佳区域的流动混合性能得到加强,能有效防止流体回流;且反应器内湍流耗散率与化学反应速率均有明显提升,反应器流动混合性能得到加强。相较于无超声条件下,超声强化后撞击流反应器制备的氧化锆颗粒为微球形,且颗粒尺寸更小、尺寸分布更窄,氧化锆更趋向于以四方相结构出现。当超声功率超过210 W后,所制备的氧化锆超细粉体为高纯度四方氧化锆。展开更多
Micro-sized anatase TiO_(2) displays inferior capacity as cathode material for magnesium ion batteries because of the higher diffusion energy barrier of Mg^(2+)in anatase TiO_(2) lattice.Herein,we report that nanosize...Micro-sized anatase TiO_(2) displays inferior capacity as cathode material for magnesium ion batteries because of the higher diffusion energy barrier of Mg^(2+)in anatase TiO_(2) lattice.Herein,we report that nanosized anatase TiO_(2) exposed(001)facet doubles the capacity compared to the micro-sized sample ascribed to the interfacial Mg^(2+)ion storage.First-principles calculations reveal that the diffusion energy barrier of Mg^(2+)on the(001)facet is significantly lower than those in the bulk phase and on(100)facet,and the adsorption energy of Mg^(2+)on the(001)facet is also considerably lower than that on(100)facet,which guarantees superior interfacial Mg^(2+)storage of(001)facet.Moreover,anatase TiO_(2) exposed(001)facet displays a significantly higher capacity of 312.9 mAh g^(−1) in Mg-Li dual-salt electrolyte compared to 234.3 mAh g^(−1) in Li salt electrolyte.The adsorption energies of Mg^(2+)on(001)facet are much lower than the adsorption energies of Li+on(001)facet,implying that the Mg^(2+)ion interfacial storage is more favorable.These results highlight that controlling the crystal facet of the nanocrystals effectively enhances the interfacial storage of multivalent ions.This work offers valuable guidance for the rational design of high-capacity storage systems.展开更多
文摘通过施加超声强化受限撞击流反应器内共沉淀反应和结晶过程,优化氧化锆纳米颗粒制备过程。采用实验和数值模拟方法研究了超声空化效应和流体动力学因素对氧化锆纳米颗粒反应沉淀过程的协同作用,以及对所制备颗粒性能的影响。利用扫描电镜(scanning electron microscope,SEM)、X-射线衍射(X-ray diffraction,XRD)对有、无超声作用下制备颗粒的形貌、结构和粒度分布进行表征。结果表明,施加超声后,撞击流反应器撞击区域上方“三角区域”与出口侧方流动不佳区域的流动混合性能得到加强,能有效防止流体回流;且反应器内湍流耗散率与化学反应速率均有明显提升,反应器流动混合性能得到加强。相较于无超声条件下,超声强化后撞击流反应器制备的氧化锆颗粒为微球形,且颗粒尺寸更小、尺寸分布更窄,氧化锆更趋向于以四方相结构出现。当超声功率超过210 W后,所制备的氧化锆超细粉体为高纯度四方氧化锆。
基金supported by the National Key R&D Program of China(No.2023YFB3809500)the Fundamental Research Funds for the Central Universities(No.2024CDJXY003)+1 种基金the Venture&Innovation Support Program for Chongqing Overseas Returnees(cx2023087)The Chongqing Technology Innovation and Application Development Project(No.2024TIAD-KPX0003).
文摘Micro-sized anatase TiO_(2) displays inferior capacity as cathode material for magnesium ion batteries because of the higher diffusion energy barrier of Mg^(2+)in anatase TiO_(2) lattice.Herein,we report that nanosized anatase TiO_(2) exposed(001)facet doubles the capacity compared to the micro-sized sample ascribed to the interfacial Mg^(2+)ion storage.First-principles calculations reveal that the diffusion energy barrier of Mg^(2+)on the(001)facet is significantly lower than those in the bulk phase and on(100)facet,and the adsorption energy of Mg^(2+)on the(001)facet is also considerably lower than that on(100)facet,which guarantees superior interfacial Mg^(2+)storage of(001)facet.Moreover,anatase TiO_(2) exposed(001)facet displays a significantly higher capacity of 312.9 mAh g^(−1) in Mg-Li dual-salt electrolyte compared to 234.3 mAh g^(−1) in Li salt electrolyte.The adsorption energies of Mg^(2+)on(001)facet are much lower than the adsorption energies of Li+on(001)facet,implying that the Mg^(2+)ion interfacial storage is more favorable.These results highlight that controlling the crystal facet of the nanocrystals effectively enhances the interfacial storage of multivalent ions.This work offers valuable guidance for the rational design of high-capacity storage systems.