铟锡复合氧化物(ITO,Indium and Tin Oxide)膜是铟的主要应用领域。在其制备工艺中,产出大量的ITO废靶需回收处理。研究了硫化沉淀法分离ITO废靶硫酸浸出液中铟、锡的工艺。平衡计算证明了硫化沉淀分离铟、锡的可行性。试验研究了温度...铟锡复合氧化物(ITO,Indium and Tin Oxide)膜是铟的主要应用领域。在其制备工艺中,产出大量的ITO废靶需回收处理。研究了硫化沉淀法分离ITO废靶硫酸浸出液中铟、锡的工艺。平衡计算证明了硫化沉淀分离铟、锡的可行性。试验研究了温度、酸度及反应时间对分离过程的影响,正交试验得出最佳工艺条件:温度323 K,反应时间20 min,溶液起始酸度100 g H2SO4/L。在此条件下,除锡率可达100%,铟在渣中的损失率仅为0.47%。展开更多
对锌精矿氧压酸浸液中铟的提取进行了研究,在1.0m o l/L的H2SO4介质中,铟可被P204定量萃取,当萃取相比为O/A=1/4,进行三级萃取,平衡时间为3m in时,In萃取率达97%以上;对负载有机相用3m o l/L的HC l进行三级反萃,O/A=5/1,平衡时间为3m in...对锌精矿氧压酸浸液中铟的提取进行了研究,在1.0m o l/L的H2SO4介质中,铟可被P204定量萃取,当萃取相比为O/A=1/4,进行三级萃取,平衡时间为3m in时,In萃取率达97%以上;对负载有机相用3m o l/L的HC l进行三级反萃,O/A=5/1,平衡时间为3m in,In反萃率为99.62%。展开更多
As a fundamental surface property of two-dimensional(2 D)materials,surface potential is critical for their emerging electronic applications and essential for van der Waals heterostructure engineering.Here,we report th...As a fundamental surface property of two-dimensional(2 D)materials,surface potential is critical for their emerging electronic applications and essential for van der Waals heterostructure engineering.Here,we report the surface potential of few-layer InSe.The effect of layer count,light intensity and different deposited substrates is considered.Few-layer InSe flakes were exfoliated from bulk InSe crystals on Si/SiO_(2)with 300-nm-thick thermal oxide and Si/SiO_(2)with 300-nm-thick thermal oxide and prefabricated micro-wells with 3μm in diameter.The samples were measured by Kelvin probe force microscopy and tuned by an integrated 405-nm(3.06 eV)laser.Based on the work function of SiO_(2)(5.00 eV),the work functions of supported and suspended InSe are determined.These results show that the work function of InSe decreases with the increase in the layer count of both supported InSe and suspended InSe.Besides,by introducing a tunable laser light,the influence of light intensity on surface potential of supported InSe was studied.The surface potential(SP)and surface potential shift between light and dark states(ASP=SP_(lignt)-SP_(dark))of supported InSe were measured and determined.These results present that the surface potential of supported InSe decreases with the increase in the light intensity and also decreases with the increase in the layer count.This is evident that light excites electrons,resulting in decreased surface potential,and the amount of electrons excited is correlated with light intensity.Meanwhile,⊿SP between light and dark states decreases with the increase in the layer count,which suggests that the influence of light illumination decreases with the increase in the layer count of few-layer InSe flakes.展开更多
Sn-doped In2O3(ITO) nanopowders in square shape were prepared in ethylene solvent by a solvothermal process,using In(4N) and SnCl4·5H2O as starting materials.The effects of solvothermal temperature and coprec...Sn-doped In2O3(ITO) nanopowders in square shape were prepared in ethylene solvent by a solvothermal process,using In(4N) and SnCl4·5H2O as starting materials.The effects of solvothermal temperature and coprecipitation pH on the products were investigated using XRD,XPS,and TEM.Mixtures of InOOH crystals and In4Sn3O12 crystals were prepared at 210°C or 230°C and ITO nanopowders with cubic structure were obtained at 250°C or above 250°C.When the coprecipitation pH was 6,the product was ITO with impurity Sn3O4.When the pH was 9,the product was single phase ITO.展开更多
文摘铟锡复合氧化物(ITO,Indium and Tin Oxide)膜是铟的主要应用领域。在其制备工艺中,产出大量的ITO废靶需回收处理。研究了硫化沉淀法分离ITO废靶硫酸浸出液中铟、锡的工艺。平衡计算证明了硫化沉淀分离铟、锡的可行性。试验研究了温度、酸度及反应时间对分离过程的影响,正交试验得出最佳工艺条件:温度323 K,反应时间20 min,溶液起始酸度100 g H2SO4/L。在此条件下,除锡率可达100%,铟在渣中的损失率仅为0.47%。
基金National Natural Science Foundation of China(51071038)Sichuan Province Science Foundation for Youths(2010JQ0002)+1 种基金State Key Laboratory for Mechanical Behavior of MaterialsXi’an Jiaotong University(20131309)
文摘对锌精矿氧压酸浸液中铟的提取进行了研究,在1.0m o l/L的H2SO4介质中,铟可被P204定量萃取,当萃取相比为O/A=1/4,进行三级萃取,平衡时间为3m in时,In萃取率达97%以上;对负载有机相用3m o l/L的HC l进行三级反萃,O/A=5/1,平衡时间为3m in,In反萃率为99.62%。
基金the Key-Area Research and Development Program of Guangdong Province(No.2018B010109009)the Shenzhen Science and Technology Innovation Committee(Nos.JCYJ20170818155752559 and JCYJ20170818160815002)+3 种基金the Instrument Developing Project of Chinese Academy of Sciences(No.ZDKYYQ20180004)the National Natural Science Foundation of China(No.11872203)the National Natural Science Foundation of China for Creative Research Groups(No.51921003)support of the China Scholarship Council。
文摘As a fundamental surface property of two-dimensional(2 D)materials,surface potential is critical for their emerging electronic applications and essential for van der Waals heterostructure engineering.Here,we report the surface potential of few-layer InSe.The effect of layer count,light intensity and different deposited substrates is considered.Few-layer InSe flakes were exfoliated from bulk InSe crystals on Si/SiO_(2)with 300-nm-thick thermal oxide and Si/SiO_(2)with 300-nm-thick thermal oxide and prefabricated micro-wells with 3μm in diameter.The samples were measured by Kelvin probe force microscopy and tuned by an integrated 405-nm(3.06 eV)laser.Based on the work function of SiO_(2)(5.00 eV),the work functions of supported and suspended InSe are determined.These results show that the work function of InSe decreases with the increase in the layer count of both supported InSe and suspended InSe.Besides,by introducing a tunable laser light,the influence of light intensity on surface potential of supported InSe was studied.The surface potential(SP)and surface potential shift between light and dark states(ASP=SP_(lignt)-SP_(dark))of supported InSe were measured and determined.These results present that the surface potential of supported InSe decreases with the increase in the light intensity and also decreases with the increase in the layer count.This is evident that light excites electrons,resulting in decreased surface potential,and the amount of electrons excited is correlated with light intensity.Meanwhile,⊿SP between light and dark states decreases with the increase in the layer count,which suggests that the influence of light illumination decreases with the increase in the layer count of few-layer InSe flakes.
文摘Sn-doped In2O3(ITO) nanopowders in square shape were prepared in ethylene solvent by a solvothermal process,using In(4N) and SnCl4·5H2O as starting materials.The effects of solvothermal temperature and coprecipitation pH on the products were investigated using XRD,XPS,and TEM.Mixtures of InOOH crystals and In4Sn3O12 crystals were prepared at 210°C or 230°C and ITO nanopowders with cubic structure were obtained at 250°C or above 250°C.When the coprecipitation pH was 6,the product was ITO with impurity Sn3O4.When the pH was 9,the product was single phase ITO.