To synergistically recover alumina and alkali from red mud(RM),the structural stability and conversion mechanism of hydroandradite(HA)from hydrogarnet(HG)were investigated via the First-principles,XRF,XRD,PSD and SEM ...To synergistically recover alumina and alkali from red mud(RM),the structural stability and conversion mechanism of hydroandradite(HA)from hydrogarnet(HG)were investigated via the First-principles,XRF,XRD,PSD and SEM methods,and a novel hydrothermal process based on the conversion principle was finally proposed.The crystal structure simulation shows that the HA with varied silicon saturation coefficients is more stable than HG,and the HA with a high iron substitution coefficient is more difficult to be converted from HG.The(110)plane of Fe_(2)O_(3) is easier to combine with HG to form HA,and the binding energy is 81.93 kJ/mol.The effects of raw material ratio,solution concentration and hydrothermal parameters on the conversion from HG to HA were revealed,and the optimal conditions for the alumina recovery were obtained.The recovery efficiencies of alumina and Na_(2)O from the RM are 63.06%and 97.34%,respectively,and the Na_(2)O content in the treated RM is only 0.13%.展开更多
Although intermediate temperature solid oxide fuel cells(IT-SOFCs)show great potential to address energy conversion challenges,the sluggish oxygen reduction reaction(ORR)kinetics of cathode materials has severely hind...Although intermediate temperature solid oxide fuel cells(IT-SOFCs)show great potential to address energy conversion challenges,the sluggish oxygen reduction reaction(ORR)kinetics of cathode materials has severely hindered extended applications.Herein,we have demonstrated that Bi^(3+)doping on the A-site synergistically regulates the phase transition and electron spin state in La_(0.3)Bi_(0.3)Ca_(0.4)FeO_(3-δ)(LBCF3)for improved performance.An orthorhombic to cubic phase transition occurred with Bi^(3+)doping increases oxygen vacancy concentration and thus increases oxygen ion migration capacity.Simultaneously,the change of Fe from low to medium electron spin state strengths O_(2)adsorption and improves catalytic performances.Consequently,a peak power density improvement up to 48%(from 1.21 to 1.79 W·cm^(-2))at 800℃ is realized in the anodesupported single cell using LBCF3 as cathode,which remains stable for over 270 h at 750℃.展开更多
基金the financial support from the National Key R&D Program of China(No.2022YFC2904405)the National Natural Science Foundation of China(Nos.22078055,51774079)。
文摘To synergistically recover alumina and alkali from red mud(RM),the structural stability and conversion mechanism of hydroandradite(HA)from hydrogarnet(HG)were investigated via the First-principles,XRF,XRD,PSD and SEM methods,and a novel hydrothermal process based on the conversion principle was finally proposed.The crystal structure simulation shows that the HA with varied silicon saturation coefficients is more stable than HG,and the HA with a high iron substitution coefficient is more difficult to be converted from HG.The(110)plane of Fe_(2)O_(3) is easier to combine with HG to form HA,and the binding energy is 81.93 kJ/mol.The effects of raw material ratio,solution concentration and hydrothermal parameters on the conversion from HG to HA were revealed,and the optimal conditions for the alumina recovery were obtained.The recovery efficiencies of alumina and Na_(2)O from the RM are 63.06%and 97.34%,respectively,and the Na_(2)O content in the treated RM is only 0.13%.
基金supported by the Xinjiang Autonomous Region Key Research Project(No.2022D01D31)the Start-up Grant of Xinjiang University,the Basic Research Fund for Autonomous Region Universities(No.XJEDU2024P015)the Natural Science Foundation of Xinjiang Uygur Autonomous Region(No.2022D01C668).
文摘Although intermediate temperature solid oxide fuel cells(IT-SOFCs)show great potential to address energy conversion challenges,the sluggish oxygen reduction reaction(ORR)kinetics of cathode materials has severely hindered extended applications.Herein,we have demonstrated that Bi^(3+)doping on the A-site synergistically regulates the phase transition and electron spin state in La_(0.3)Bi_(0.3)Ca_(0.4)FeO_(3-δ)(LBCF3)for improved performance.An orthorhombic to cubic phase transition occurred with Bi^(3+)doping increases oxygen vacancy concentration and thus increases oxygen ion migration capacity.Simultaneously,the change of Fe from low to medium electron spin state strengths O_(2)adsorption and improves catalytic performances.Consequently,a peak power density improvement up to 48%(from 1.21 to 1.79 W·cm^(-2))at 800℃ is realized in the anodesupported single cell using LBCF3 as cathode,which remains stable for over 270 h at 750℃.