Memristive crossbar arrays(MCAs)offer parallel data storage and processing for energy-efficient neuromorphic computing.However,most wafer-scale MCAs that are compatible with complementary metal-oxide-semiconductor(CMO...Memristive crossbar arrays(MCAs)offer parallel data storage and processing for energy-efficient neuromorphic computing.However,most wafer-scale MCAs that are compatible with complementary metal-oxide-semiconductor(CMOS)technology still suffer from substantially larger energy consumption than biological synapses,due to the slow kinetics of forming conductive paths inside the memristive units.Here we report wafer-scale Ag_(2)S-based MCAs realized using CMOS-compatible processes at temperatures below 160℃.Ag_(2)S electrolytes supply highly mobile Ag+ions,and provide the Ag/Ag_(2)S interface with low silver nucleation barrier to form silver filaments at low energy costs.By further enhancing Ag+migration in Ag_(2)S electrolytes via microstructure modulation,the integrated memristors exhibit a record low threshold of approximately−0.1 V,and demonstrate ultra-low switching-energies reaching femtojoule values as observed in biological synapses.The low-temperature process also enables MCA integration on polyimide substrates for applications in flexible electronics.Moreover,the intrinsic nonidealities of the memristive units for deep learning can be compensated by employing an advanced training algorithm.An impressive accuracy of 92.6%in image recognition simulations is demonstrated with the MCAs after the compensation.The demonstrated MCAs provide a promising device option for neuromorphic computing with ultra-high energy-efficiency.展开更多
The ionicity of ionic solids is typically characterized by the electronegativity of the constituent ions.Electronegativity measures the ability of electron transfer between atoms and is commonly considered under ambie...The ionicity of ionic solids is typically characterized by the electronegativity of the constituent ions.Electronegativity measures the ability of electron transfer between atoms and is commonly considered under ambient conditions.Howeve r,external stresses profoundly change the ionicity,and compressed ionic compounds may behave differently.Here,we focus on silver halides,with constituent ions from one of the most electropositive metals and some of the most electronegative nonme tals.Using first-principles calculations,we find that the strengths of the ionic bonds in these compounds change greatly under pressure owing to downshifting of the Ag 4d-orbital.The center of this orbital is lowered to fill the antibonding state below the Fermi level,leading to chemical decomposition.Our results suggest that under pressure,the orbital energies and correspondingly the electronegativities still tune the ionicity and control the electron transfer,ionicity,and reactivity of both the metal and the nonmetal elements.However,the effects of orbital energies start to become dominant under pressure,causing substantial changes to the chemistry of ionic compounds and leading to an unusual phenomenon in which elements with substantial electronegativity differences,such as Ag and Br,do not necessarily form ionic compounds,but remain in their elemental forms.展开更多
It is well known that atoms of the same element in different valence states show very different chemical behaviors.Calcium is a typical divalent metal,sharing or losing both of its valence electrons when forming compo...It is well known that atoms of the same element in different valence states show very different chemical behaviors.Calcium is a typical divalent metal,sharing or losing both of its valence electrons when forming compounds.Attempts have been made to synthesize compounds of monovalent calcium ions for decades,but with very little success(e.g.,in clusters).Pressure can result in substantial changes in the properties of atoms and chemical bonding,creating an extensive variety of unique materials with special valence states.In this study,using the ab initio evolutionary algorithm USPEX,we search for stable calcium-chlorine(Ca-Cl)system compounds at pressures up to 100 GPa.Besides the expected compound CaCl_(2),we predict three new compounds with monovalent Ca to be stable at high pressures,namely,CaCl,Ca_(5)Cl_(6),and Ca_(3)Cl_(4).According to our calculations,CaCl is stable at pressures above 18 GPa and is predicted to undergo a transition from nonmagnetic Fm-3m-CaCl to ferromagnetic Pm-3m-CaCl at 40 GPa.Ca_(5)Cl_(6)and Ca_(3)Cl_(4)are stable at pressures above 37 and 73 GPa,with space groups P-1 and R-3,respectively.Following these predictions,we successfully synthesized Pm-3m-CaCl in laser-heated diamond anvil cell experiments.The emergence of the unusual valence state at high pressures reveals exciting opportunities for creating entirely new materials in sufficiently large quantities for a variety of potential applications.展开更多
To clarify the effect of SnO2 particle size on the arc erosion behavior of AgSnO2 contact material, Ag?4%SnO2 (mass fraction) contact materials with different sizes of SnO2 particles were fabricated by powder metallur...To clarify the effect of SnO2 particle size on the arc erosion behavior of AgSnO2 contact material, Ag?4%SnO2 (mass fraction) contact materials with different sizes of SnO2 particles were fabricated by powder metallurgy. The microstructure of Ag?4%SnO2 contact materials was characterized, and the relative density, hardness and electrical conductivity were measured. The arc erosion of Ag?4%SnO2 contact materials was tested, the arc duration and mass loss before and after arc erosion were determined, the surface morphologies and compositions of Ag?4%SnO2 contact materials after arc erosion were characterized, and the arc erosion mechanism of AgSnO2 contact materials was discussed. The results show that fine SnO2 particle is beneficial for the improvement of the relative density and hardness, but decreases the electrical conductivity. With the decrease of SnO2 particle size, Ag?4%SnO2contact material presents shorter arc duration, less mass loss, larger erosion area and shallower arc erosion pits.展开更多
基金supported by the Swedish Strategic Research Foundation(SSF FFL15-0174 to Zhen Zhang)the Swedish Research Council(VR 2018-06030 and 2019-04690 to Zhen Zhang)+1 种基金the Wallenberg Academy Fellow Extension Program(KAW 2020-0190 to Zhen Zhang)the Olle Engkvist Foundation(Postdoc grant 214-0322 to Zhen Zhang).
文摘Memristive crossbar arrays(MCAs)offer parallel data storage and processing for energy-efficient neuromorphic computing.However,most wafer-scale MCAs that are compatible with complementary metal-oxide-semiconductor(CMOS)technology still suffer from substantially larger energy consumption than biological synapses,due to the slow kinetics of forming conductive paths inside the memristive units.Here we report wafer-scale Ag_(2)S-based MCAs realized using CMOS-compatible processes at temperatures below 160℃.Ag_(2)S electrolytes supply highly mobile Ag+ions,and provide the Ag/Ag_(2)S interface with low silver nucleation barrier to form silver filaments at low energy costs.By further enhancing Ag+migration in Ag_(2)S electrolytes via microstructure modulation,the integrated memristors exhibit a record low threshold of approximately−0.1 V,and demonstrate ultra-low switching-energies reaching femtojoule values as observed in biological synapses.The low-temperature process also enables MCA integration on polyimide substrates for applications in flexible electronics.Moreover,the intrinsic nonidealities of the memristive units for deep learning can be compensated by employing an advanced training algorithm.An impressive accuracy of 92.6%in image recognition simulations is demonstrated with the MCAs after the compensation.The demonstrated MCAs provide a promising device option for neuromorphic computing with ultra-high energy-efficiency.
基金supported by the National Natural Science Foundation of China(Grant Nos.11974154,12304278,and T2425016)the Taishan Scholars Special Funding for Construction Projects(Grant No.TSTP20230622)+1 种基金the Natural Science Foundation of Shandong Province(Grant Nos.ZR2022MA004 and ZR2023QA127)the Special Foundation of Yantai for Leading Talents above Provincial Level。
文摘The ionicity of ionic solids is typically characterized by the electronegativity of the constituent ions.Electronegativity measures the ability of electron transfer between atoms and is commonly considered under ambient conditions.Howeve r,external stresses profoundly change the ionicity,and compressed ionic compounds may behave differently.Here,we focus on silver halides,with constituent ions from one of the most electropositive metals and some of the most electronegative nonme tals.Using first-principles calculations,we find that the strengths of the ionic bonds in these compounds change greatly under pressure owing to downshifting of the Ag 4d-orbital.The center of this orbital is lowered to fill the antibonding state below the Fermi level,leading to chemical decomposition.Our results suggest that under pressure,the orbital energies and correspondingly the electronegativities still tune the ionicity and control the electron transfer,ionicity,and reactivity of both the metal and the nonmetal elements.However,the effects of orbital energies start to become dominant under pressure,causing substantial changes to the chemistry of ionic compounds and leading to an unusual phenomenon in which elements with substantial electronegativity differences,such as Ag and Br,do not necessarily form ionic compounds,but remain in their elemental forms.
基金supported by the National Science Foundation of China(Grant Nos.92263101,12174200,21627802,51722209,and 21273206)the Science Challenge Project(Grant No.TZ2016001)+2 种基金the Key Research Project of Higher Education(Grant Nos.15A140016 and 2010GGJS-110)the National Key R&D Program of China(Grant No.YS2018YFA070119)supported by the Russian Science Foundation(Grant No.24-43-00162)。
文摘It is well known that atoms of the same element in different valence states show very different chemical behaviors.Calcium is a typical divalent metal,sharing or losing both of its valence electrons when forming compounds.Attempts have been made to synthesize compounds of monovalent calcium ions for decades,but with very little success(e.g.,in clusters).Pressure can result in substantial changes in the properties of atoms and chemical bonding,creating an extensive variety of unique materials with special valence states.In this study,using the ab initio evolutionary algorithm USPEX,we search for stable calcium-chlorine(Ca-Cl)system compounds at pressures up to 100 GPa.Besides the expected compound CaCl_(2),we predict three new compounds with monovalent Ca to be stable at high pressures,namely,CaCl,Ca_(5)Cl_(6),and Ca_(3)Cl_(4).According to our calculations,CaCl is stable at pressures above 18 GPa and is predicted to undergo a transition from nonmagnetic Fm-3m-CaCl to ferromagnetic Pm-3m-CaCl at 40 GPa.Ca_(5)Cl_(6)and Ca_(3)Cl_(4)are stable at pressures above 37 and 73 GPa,with space groups P-1 and R-3,respectively.Following these predictions,we successfully synthesized Pm-3m-CaCl in laser-heated diamond anvil cell experiments.The emergence of the unusual valence state at high pressures reveals exciting opportunities for creating entirely new materials in sufficiently large quantities for a variety of potential applications.
基金Project(51274163)supported by the National Natural Science Foundation of ChinaProject(13JS076)supported by the Key Laboratory Research Program of Shaanxi Province,China+1 种基金Project(2012KCT-25)supported by the Pivot Innovation Team of Shaanxi Electrical Materials and Infiltration Technique,ChinaProject(2011HBSZS009)supported by the Special Foundation of Key Disciplines,China
文摘To clarify the effect of SnO2 particle size on the arc erosion behavior of AgSnO2 contact material, Ag?4%SnO2 (mass fraction) contact materials with different sizes of SnO2 particles were fabricated by powder metallurgy. The microstructure of Ag?4%SnO2 contact materials was characterized, and the relative density, hardness and electrical conductivity were measured. The arc erosion of Ag?4%SnO2 contact materials was tested, the arc duration and mass loss before and after arc erosion were determined, the surface morphologies and compositions of Ag?4%SnO2 contact materials after arc erosion were characterized, and the arc erosion mechanism of AgSnO2 contact materials was discussed. The results show that fine SnO2 particle is beneficial for the improvement of the relative density and hardness, but decreases the electrical conductivity. With the decrease of SnO2 particle size, Ag?4%SnO2contact material presents shorter arc duration, less mass loss, larger erosion area and shallower arc erosion pits.