The electrochemical reduction of nitrate(NO_(3)−)to ammonia(NH_(3))(NO3RR)represents an environmentally sustainable strategy for NH_(3)production while concurrently addressing water pollution challenges.Nevertheless,t...The electrochemical reduction of nitrate(NO_(3)−)to ammonia(NH_(3))(NO3RR)represents an environmentally sustainable strategy for NH_(3)production while concurrently addressing water pollution challenges.Nevertheless,the intrinsic complexity of this multi-step reaction severely constrains both the selectivity and efficiency of NO3RR.Copper-based electrocatalysts have been extensively investigated for NO_(3)RR but often suffer from nitrite(NO_(2)^(−))accumulation,which stems from insufficient NO_(3)^(−)adsorption strength.This limitation often leads to rapid catalyst deactivation,hindered hydrogenation pathways,and reduced overall efficiency.Herein,we report a one-step green chemical reduction method to synthesize PtCuSnCo quarternary alloy nanoparticles with homogeneously distributed elements.Under practical NO3−concentrations,the optimized catalyst exhibited an impressive Faradaic efficiency approaching 100%and an outstanding selectivity of 95.6±2.9%.Mechanistic insights uncovered that SnCo sites robustly facilitated NO_(3)^(−)adsorption,complemented by the proficiency of PtCu sites in NO3−reduction.The synergistic spatial neighborhood effect between SnCo and PtCu sites efficiently stabilizes NO_(3)^(−)deoxygenation and suppresses NO_(2)^(−)accumulation.This tandem architecture achieves a finely tuned balance between adsorption strength and deoxygenation kinetics,enabling highly selective and efficient NO3RR.Our findings emphasize the indispensable role of engineered multi-metallic catalysts in overcoming persistent challenges of NO3RR,paving the way for advanced NH3 synthesis and environmental remediation.展开更多
Herein,vacancy engineering is utilized reasonably to explore molybdenum tungsten oxide nanowires(W_(4)MoO_(3)NWs)rich in O-vacancies as an advanced electrochemical nitrogen reduction reaction(eNRR)electrocatalyst,real...Herein,vacancy engineering is utilized reasonably to explore molybdenum tungsten oxide nanowires(W_(4)MoO_(3)NWs)rich in O-vacancies as an advanced electrochemical nitrogen reduction reaction(eNRR)electrocatalyst,realizing further enhancement of NRR performance.In 0.1 mol/L Na_(2)SO_(4),W_(4)MoO_(3)NWs rich in O vacancies(CTAB-D-W_(4)MoO_(3))achieve a large NH3yield of 60.77μg h^(-1)mg^(-1)cat.at-0.70 V vs.RHE and a high faradaic efficiency of 56.42%at-0.60 V,much superior to the W_(4)MoO_(3)NWs deficient in oxygen vacancies(20.26μg h^(-1)mg^(-1)cat.and 17.1%at-0.70 V vs.RHE).Meanwhile,W_(4)MoO_(3)NWs rich in O-vacancies also show high electrochemical stability.Density functional theory(DFT)calculations present that O vacancies in CTAB-D-W_(4)MoO_(3)reduce the energy barrier formed by the intermediate of^(*)N-NH,facilitate the activation and further hydrogenation of^(*)N-N,promote the NRR process,and improve NRR activity.展开更多
文摘The electrochemical reduction of nitrate(NO_(3)−)to ammonia(NH_(3))(NO3RR)represents an environmentally sustainable strategy for NH_(3)production while concurrently addressing water pollution challenges.Nevertheless,the intrinsic complexity of this multi-step reaction severely constrains both the selectivity and efficiency of NO3RR.Copper-based electrocatalysts have been extensively investigated for NO_(3)RR but often suffer from nitrite(NO_(2)^(−))accumulation,which stems from insufficient NO_(3)^(−)adsorption strength.This limitation often leads to rapid catalyst deactivation,hindered hydrogenation pathways,and reduced overall efficiency.Herein,we report a one-step green chemical reduction method to synthesize PtCuSnCo quarternary alloy nanoparticles with homogeneously distributed elements.Under practical NO3−concentrations,the optimized catalyst exhibited an impressive Faradaic efficiency approaching 100%and an outstanding selectivity of 95.6±2.9%.Mechanistic insights uncovered that SnCo sites robustly facilitated NO_(3)^(−)adsorption,complemented by the proficiency of PtCu sites in NO3−reduction.The synergistic spatial neighborhood effect between SnCo and PtCu sites efficiently stabilizes NO_(3)^(−)deoxygenation and suppresses NO_(2)^(−)accumulation.This tandem architecture achieves a finely tuned balance between adsorption strength and deoxygenation kinetics,enabling highly selective and efficient NO3RR.Our findings emphasize the indispensable role of engineered multi-metallic catalysts in overcoming persistent challenges of NO3RR,paving the way for advanced NH3 synthesis and environmental remediation.
基金supported by the National Natural Science Foundation of China(No.51872173)Natural Science Foundation of Shandong Province(No.ZR2022JQ21)。
文摘Herein,vacancy engineering is utilized reasonably to explore molybdenum tungsten oxide nanowires(W_(4)MoO_(3)NWs)rich in O-vacancies as an advanced electrochemical nitrogen reduction reaction(eNRR)electrocatalyst,realizing further enhancement of NRR performance.In 0.1 mol/L Na_(2)SO_(4),W_(4)MoO_(3)NWs rich in O vacancies(CTAB-D-W_(4)MoO_(3))achieve a large NH3yield of 60.77μg h^(-1)mg^(-1)cat.at-0.70 V vs.RHE and a high faradaic efficiency of 56.42%at-0.60 V,much superior to the W_(4)MoO_(3)NWs deficient in oxygen vacancies(20.26μg h^(-1)mg^(-1)cat.and 17.1%at-0.70 V vs.RHE).Meanwhile,W_(4)MoO_(3)NWs rich in O-vacancies also show high electrochemical stability.Density functional theory(DFT)calculations present that O vacancies in CTAB-D-W_(4)MoO_(3)reduce the energy barrier formed by the intermediate of^(*)N-NH,facilitate the activation and further hydrogenation of^(*)N-N,promote the NRR process,and improve NRR activity.