The availability of nitrogen(N)is crucial for both the productivity of terrestrial and aquatic ecosystems globally.However,the overuse of artificial fertilizers and the energy required to fix nitrogen have pushed the ...The availability of nitrogen(N)is crucial for both the productivity of terrestrial and aquatic ecosystems globally.However,the overuse of artificial fertilizers and the energy required to fix nitrogen have pushed the global nitrogen cycle(N-cycle)past its safe operating limits,leading to severe nitrogen pollution and the production of significant amounts of greenhouse gas nitrous oxide(N2O).The anaerobic ammonium oxidation(anammox)mechanism can counteract the release of ammonium and N2O in many oxygenlimited situations,assisting in the restoration of the homeostasis of the Earth’s N biogeochemistry.In this work,we looked into the characteristics of the anammox hotspots’distribution across various types of ecosystems worldwide.Anammox hotspots are present at diverse oxic-anoxic interfaces in terrestrial systems,and they are most prevalent at the oxic-anoxic transition zone in aquatic ecosystems.Based on the discovery of an anammox hotspot capable of oxidizing ammonium anoxically into N2 without N2O by-product,we then designed an innovative concept and technical routes of nature-based anammox hotspot geoengineering for climate change,biodiversity loss,and efficient utilization of water resources.After 15 years of actual use,anammox hotspot geoengineering has proven to be effective in ensuring clean drinking water,regulating the climate,fostering plant and animal diversity,and enhancing longterm environmental quality.The sustainable biogeoengineering of anammox could be a workable natural remedy to resolve the conflicts between environmental pollution and food security connected to N management.展开更多
Tetracycline(TC)as a typical emerging pollutant is becoming a serious threat to the environment and human health.A combined advanced oxidation technology of UV/Ozone(O_(3))/peroxydisulfate(PDS)process was developed to...Tetracycline(TC)as a typical emerging pollutant is becoming a serious threat to the environment and human health.A combined advanced oxidation technology of UV/Ozone(O_(3))/peroxydisulfate(PDS)process was developed to explore an efficient and economic treatment process of TC in wastewater.Furthermore,the reactive sites and transformation pathways of TC were explored and the toxicity of the intermediates was quantified with a quantitative structure-activity relationship(QSAR)assessment.The degradation performance of TC was substantially enhanced in UV/O_(3)/PDS process with a kobsof 0.0949 min-1,which was 2.3 times higher than UV/O_(3)and 3.2 times than sole UV.The results demonstrated that there was a superior synergistic effect of PDS on UV/O_(3)processes for the degradation of TC.Electron paramagnetic resonance(EPR)analysis and quenching experiments show that·OH,SO_(4)·-,O_(2)·-and1O_(2)all contributed to TC degradation in the UV/O_(3)/PDS process and exhibited a synergistic effect,which inhibited the generation of harmful products.In addition,the UV/O_(3)/PDS system can effectively degrade TC in a wide range of substrate concentrations and pH,and also showed excellent adaptability to various concentrations of anions(Cl-and HCO_(3)-).This study proves the feasibility of UV/O_(3)/PDS process for treating TC contaminated wastewater with complicated water matrix.展开更多
基金supported by the National Natural Science Foundation of China(91851204 and 42021005)the Special project of eco-environmental technology for peak carbon dioxide emissions and carbon neutrality(RCEES-TDZ-2021-20).
文摘The availability of nitrogen(N)is crucial for both the productivity of terrestrial and aquatic ecosystems globally.However,the overuse of artificial fertilizers and the energy required to fix nitrogen have pushed the global nitrogen cycle(N-cycle)past its safe operating limits,leading to severe nitrogen pollution and the production of significant amounts of greenhouse gas nitrous oxide(N2O).The anaerobic ammonium oxidation(anammox)mechanism can counteract the release of ammonium and N2O in many oxygenlimited situations,assisting in the restoration of the homeostasis of the Earth’s N biogeochemistry.In this work,we looked into the characteristics of the anammox hotspots’distribution across various types of ecosystems worldwide.Anammox hotspots are present at diverse oxic-anoxic interfaces in terrestrial systems,and they are most prevalent at the oxic-anoxic transition zone in aquatic ecosystems.Based on the discovery of an anammox hotspot capable of oxidizing ammonium anoxically into N2 without N2O by-product,we then designed an innovative concept and technical routes of nature-based anammox hotspot geoengineering for climate change,biodiversity loss,and efficient utilization of water resources.After 15 years of actual use,anammox hotspot geoengineering has proven to be effective in ensuring clean drinking water,regulating the climate,fostering plant and animal diversity,and enhancing longterm environmental quality.The sustainable biogeoengineering of anammox could be a workable natural remedy to resolve the conflicts between environmental pollution and food security connected to N management.
基金financial support from the National Natural Foundation of China(Nos.52370045 and 51838009)Natural Science Foundation of Shanghai(No.23ZR1467500),and Shanghai Rising-Star Program(No.20QC1400300)。
文摘Tetracycline(TC)as a typical emerging pollutant is becoming a serious threat to the environment and human health.A combined advanced oxidation technology of UV/Ozone(O_(3))/peroxydisulfate(PDS)process was developed to explore an efficient and economic treatment process of TC in wastewater.Furthermore,the reactive sites and transformation pathways of TC were explored and the toxicity of the intermediates was quantified with a quantitative structure-activity relationship(QSAR)assessment.The degradation performance of TC was substantially enhanced in UV/O_(3)/PDS process with a kobsof 0.0949 min-1,which was 2.3 times higher than UV/O_(3)and 3.2 times than sole UV.The results demonstrated that there was a superior synergistic effect of PDS on UV/O_(3)processes for the degradation of TC.Electron paramagnetic resonance(EPR)analysis and quenching experiments show that·OH,SO_(4)·-,O_(2)·-and1O_(2)all contributed to TC degradation in the UV/O_(3)/PDS process and exhibited a synergistic effect,which inhibited the generation of harmful products.In addition,the UV/O_(3)/PDS system can effectively degrade TC in a wide range of substrate concentrations and pH,and also showed excellent adaptability to various concentrations of anions(Cl-and HCO_(3)-).This study proves the feasibility of UV/O_(3)/PDS process for treating TC contaminated wastewater with complicated water matrix.