为解决第三代音视频编码标准(audio video coding standard 3,AVS3)帧内预测的耗时问题,提出一种基于最小编码单元(coding unit,CU)代价的帧内预测并行算法。首先,将图像划分为最小CU。然后,利用原始像素作为参考,并行计算所有最小CU的...为解决第三代音视频编码标准(audio video coding standard 3,AVS3)帧内预测的耗时问题,提出一种基于最小编码单元(coding unit,CU)代价的帧内预测并行算法。首先,将图像划分为最小CU。然后,利用原始像素作为参考,并行计算所有最小CU的帧内模式代价。最后,用代价组合的方式快速计算出其他CU的帧内模式优先级,选择最优的15个模式进入粗略模式决策(rough mode decision,RMD)阶段。此外,为减少方法引入的误差,提出了3种优化策略。在预测前对原始像素进行预处理,使其更贴合重构像素;修改帧内预测的代价函数,以更准确地估计每种模式的优先级;大尺寸CU使用顶层的CU代价作为参考,减少CU组合累积的误差。实验结果表明,在码率仅下降0.35%的情况下,整体编码的计算时间减少了27%,有效地减少了帧内预测的耗时并保证了编码质量。展开更多
针对Gradient vector field Snakes模型轮廓线需人工初始化的问题及GVF场强分布不合理所导致的模型效率低下和角点定位精度低的问题,在分析GVF场强分布和模型迭代变形原理的基础上,改进原始GVF Snakes模型:模型以SUSAN算法提取的边缘点...针对Gradient vector field Snakes模型轮廓线需人工初始化的问题及GVF场强分布不合理所导致的模型效率低下和角点定位精度低的问题,在分析GVF场强分布和模型迭代变形原理的基础上,改进原始GVF Snakes模型:模型以SUSAN算法提取的边缘点集构建GVF Snakes模型的初始化轮廓线;并依据图像SUSAN边缘线和模型迭代变形原理局部修正和整体调整GVF场强分布,以符合模型高效迭代变形和对角点、细边缘精确定位的需要。理论分析和实验结果表明,改进GVF的自动Snakes模型提高了模型的计算效率,对细边缘和角点有更高的定位精度。展开更多
目的尽管传统的联合信源信道编码方案可以获得高效的压缩性能,但当信道恶化超过信道编码的纠错能力时会导致解码端重构性能的急剧下降;为此利用压缩感知的民主性提出一种鲁棒的SAR图像编码传输方案,且采用了一系列方法提高该方案的率失...目的尽管传统的联合信源信道编码方案可以获得高效的压缩性能,但当信道恶化超过信道编码的纠错能力时会导致解码端重构性能的急剧下降;为此利用压缩感知的民主性提出一种鲁棒的SAR图像编码传输方案,且采用了一系列方法提高该方案的率失真性能。方法考虑到SAR图像丰富的边缘信息,采用具有更强方向表示能力的方向提升小波变换(DLWT)对SAR图像进行稀疏表示,且为消除压缩感知中恢复非稀疏信号时存在的混叠效应,采用了稀疏滤波方法保证大系数的精确恢复,在解码端采用了高效的Bayesian重建算法获得图像的高性能重建。结果在同等码率下,与传统的联合信源信道编码方案CCSDS-RS相比,本文方案可以实现更加鲁棒的编码传输,当丢包率达到0.05时,本文方案DSFB-CS获得的重建性能明显要高于CCSDS-RS;与基于Bayesian重建算法TSW-CS的传统方案相比,本文方案可提高峰值信噪比(PSNR)3.9 d B。结论本文方案DSFB-CS实现了SAR图像的鲁棒传输,随着丢包率的上升,DSFB-CS获得的重建性能缓慢下降,保证了面对不稳定信道时,解码端可以获得相对稳定的重构图像。展开更多
分布式视频编码(distributed video coding,DVC)是一种新的视频编码算法,与传统视频编码系统相比,具有低编码复杂度和高鲁棒性的优点。但它的压缩率比较低,对画面组(group of picture,GOP)的长度依赖性比较大。将H.264解码算法引入像素...分布式视频编码(distributed video coding,DVC)是一种新的视频编码算法,与传统视频编码系统相比,具有低编码复杂度和高鲁棒性的优点。但它的压缩率比较低,对画面组(group of picture,GOP)的长度依赖性比较大。将H.264解码算法引入像素域视频编码系统(pixel domain Wyner-Ziv codec,PDWZ)中,提出了一种混合视频编码框架。系统采用了并行编码和迭代解码结构,同时引入了预测编码和一种新的边信息生成算法。仿真结果表明,提出的结构比最优的PDWZ有更高的压缩效率。同时它使视频能顺序编解码,并提供了多层的可分级性。展开更多
在R-λ帧内码控中,提出基于卷积神经网络(Convolutional Neural Networks,CNN)的最佳比特分配和最优拉格朗日因子λ选择。首先,探索编码树单元(Coding Tree Unit,CTU)的码率与失真(Rate-Distortion,R-D)及码率与拉格朗日因子λ(Rate-λ...在R-λ帧内码控中,提出基于卷积神经网络(Convolutional Neural Networks,CNN)的最佳比特分配和最优拉格朗日因子λ选择。首先,探索编码树单元(Coding Tree Unit,CTU)的码率与失真(Rate-Distortion,R-D)及码率与拉格朗日因子λ(Rate-λ,R-λ)的关系特性,设计具有四输出的CNN预测R-D和R-λ曲线的关键参数;然后,建立帧级λ和目标码率的优化方程,反演得到最佳CTU码率分配;最后,根据CTU码率分配和先知的R-λ曲线,得到最优CTU级λ。实验表明,算法在保持4.76%控制精度下,比VTM13.0默认码控算法提高0.31 dB的编码质量。展开更多
文摘为解决第三代音视频编码标准(audio video coding standard 3,AVS3)帧内预测的耗时问题,提出一种基于最小编码单元(coding unit,CU)代价的帧内预测并行算法。首先,将图像划分为最小CU。然后,利用原始像素作为参考,并行计算所有最小CU的帧内模式代价。最后,用代价组合的方式快速计算出其他CU的帧内模式优先级,选择最优的15个模式进入粗略模式决策(rough mode decision,RMD)阶段。此外,为减少方法引入的误差,提出了3种优化策略。在预测前对原始像素进行预处理,使其更贴合重构像素;修改帧内预测的代价函数,以更准确地估计每种模式的优先级;大尺寸CU使用顶层的CU代价作为参考,减少CU组合累积的误差。实验结果表明,在码率仅下降0.35%的情况下,整体编码的计算时间减少了27%,有效地减少了帧内预测的耗时并保证了编码质量。
文摘目的尽管传统的联合信源信道编码方案可以获得高效的压缩性能,但当信道恶化超过信道编码的纠错能力时会导致解码端重构性能的急剧下降;为此利用压缩感知的民主性提出一种鲁棒的SAR图像编码传输方案,且采用了一系列方法提高该方案的率失真性能。方法考虑到SAR图像丰富的边缘信息,采用具有更强方向表示能力的方向提升小波变换(DLWT)对SAR图像进行稀疏表示,且为消除压缩感知中恢复非稀疏信号时存在的混叠效应,采用了稀疏滤波方法保证大系数的精确恢复,在解码端采用了高效的Bayesian重建算法获得图像的高性能重建。结果在同等码率下,与传统的联合信源信道编码方案CCSDS-RS相比,本文方案可以实现更加鲁棒的编码传输,当丢包率达到0.05时,本文方案DSFB-CS获得的重建性能明显要高于CCSDS-RS;与基于Bayesian重建算法TSW-CS的传统方案相比,本文方案可提高峰值信噪比(PSNR)3.9 d B。结论本文方案DSFB-CS实现了SAR图像的鲁棒传输,随着丢包率的上升,DSFB-CS获得的重建性能缓慢下降,保证了面对不稳定信道时,解码端可以获得相对稳定的重构图像。
文摘分布式视频编码(distributed video coding,DVC)是一种新的视频编码算法,与传统视频编码系统相比,具有低编码复杂度和高鲁棒性的优点。但它的压缩率比较低,对画面组(group of picture,GOP)的长度依赖性比较大。将H.264解码算法引入像素域视频编码系统(pixel domain Wyner-Ziv codec,PDWZ)中,提出了一种混合视频编码框架。系统采用了并行编码和迭代解码结构,同时引入了预测编码和一种新的边信息生成算法。仿真结果表明,提出的结构比最优的PDWZ有更高的压缩效率。同时它使视频能顺序编解码,并提供了多层的可分级性。