介绍了一种用于近场麦克风阵列后滤波语音增强的方法,避免了现有的利用自功率谱密度和互功率谱密度的Zelinski和McCowan后滤波器中噪声功率谱过估计的问题,并加入了近场传播的幅度衰减补偿和相位延迟补偿。使用卡内基梅隆大学提供的多...介绍了一种用于近场麦克风阵列后滤波语音增强的方法,避免了现有的利用自功率谱密度和互功率谱密度的Zelinski和McCowan后滤波器中噪声功率谱过估计的问题,并加入了近场传播的幅度衰减补偿和相位延迟补偿。使用卡内基梅隆大学提供的多麦克风语音数据以及使用Habets E A P提出的生成阵列散射噪声的方法进行的仿真实验,证明了改进的方法在语音质量客观评估量方面优于Zelinski后滤波法和McCowan后滤波法。展开更多
在单个麦克风的声反馈抑制系统中,基于μ准则的比例归一化最小均方(Proportionate normalized least mean square based onμ-law, MPNLMS)算法由于步长控制矩阵更优,总体收敛速度快,被广泛应用于声反馈抑制技术,但MPNLMS算法对滤波器...在单个麦克风的声反馈抑制系统中,基于μ准则的比例归一化最小均方(Proportionate normalized least mean square based onμ-law, MPNLMS)算法由于步长控制矩阵更优,总体收敛速度快,被广泛应用于声反馈抑制技术,但MPNLMS算法对滤波器系数的有偏估计会显著地降低其性能。针对上述问题,提出一种基于双麦克风模型的MPNLMS算法,系统中副麦克风估计主麦克风的有效输入信号,将估计信号与主麦克风输出信号相减之后所得的误差信号用于自适应滤波器系数的更新。仿真结果表明,提出的基于双麦克风模型的MPNLMS算法不再受制于扬声器输出信号与有效信号之间的相关性,而且上述算法的收敛速度、误差与最大增益均优于传统单个麦克风声反馈抑制系统中的MPNLMS算法。展开更多
为了改善噪声谱估计算法对噪声的估计能力,提出基于维纳过滤的最小值控制递归平均(improved minimum control recursion average,IMCRA)算法。采用二级过滤技术,第一级利用参变维纳滤波算法过滤带噪语音得到语音频谱的估算值,计算其先...为了改善噪声谱估计算法对噪声的估计能力,提出基于维纳过滤的最小值控制递归平均(improved minimum control recursion average,IMCRA)算法。采用二级过滤技术,第一级利用参变维纳滤波算法过滤带噪语音得到语音频谱的估算值,计算其先验信噪比和后验信噪比,通过维纳滤波传递函数计算输出语音。第二级利用IMCRA算法对语音信号进行噪声估计,使用基本谱减法过滤噪声得到语音信号。对比实验结果表明,该算法提高了噪声的估计能力,同时语音信号的可懂度和清晰度也有所提高。展开更多
文摘介绍了一种用于近场麦克风阵列后滤波语音增强的方法,避免了现有的利用自功率谱密度和互功率谱密度的Zelinski和McCowan后滤波器中噪声功率谱过估计的问题,并加入了近场传播的幅度衰减补偿和相位延迟补偿。使用卡内基梅隆大学提供的多麦克风语音数据以及使用Habets E A P提出的生成阵列散射噪声的方法进行的仿真实验,证明了改进的方法在语音质量客观评估量方面优于Zelinski后滤波法和McCowan后滤波法。
文摘在单个麦克风的声反馈抑制系统中,基于μ准则的比例归一化最小均方(Proportionate normalized least mean square based onμ-law, MPNLMS)算法由于步长控制矩阵更优,总体收敛速度快,被广泛应用于声反馈抑制技术,但MPNLMS算法对滤波器系数的有偏估计会显著地降低其性能。针对上述问题,提出一种基于双麦克风模型的MPNLMS算法,系统中副麦克风估计主麦克风的有效输入信号,将估计信号与主麦克风输出信号相减之后所得的误差信号用于自适应滤波器系数的更新。仿真结果表明,提出的基于双麦克风模型的MPNLMS算法不再受制于扬声器输出信号与有效信号之间的相关性,而且上述算法的收敛速度、误差与最大增益均优于传统单个麦克风声反馈抑制系统中的MPNLMS算法。
文摘为了改善噪声谱估计算法对噪声的估计能力,提出基于维纳过滤的最小值控制递归平均(improved minimum control recursion average,IMCRA)算法。采用二级过滤技术,第一级利用参变维纳滤波算法过滤带噪语音得到语音频谱的估算值,计算其先验信噪比和后验信噪比,通过维纳滤波传递函数计算输出语音。第二级利用IMCRA算法对语音信号进行噪声估计,使用基本谱减法过滤噪声得到语音信号。对比实验结果表明,该算法提高了噪声的估计能力,同时语音信号的可懂度和清晰度也有所提高。