期刊导航
期刊开放获取
vip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于YOLO v3和传感器融合的机器人定位建图系统
被引量:
5
1
作者
陈文峰
张学习
+1 位作者
蔡述庭
熊晓明
《自动化与信息工程》
2021年第2期34-38,48,共6页
场景中的动态物体影响移动机器人定位算法的精度,使机器人无法建立蕴含场景信息的高精度地图,降低定位建图系统在复杂场景中的鲁棒性。针对目前主流动态SLAM技术受限于系统需求和硬件性能,无法兼顾移动机器人定位精度和系统实时性的问题...
场景中的动态物体影响移动机器人定位算法的精度,使机器人无法建立蕴含场景信息的高精度地图,降低定位建图系统在复杂场景中的鲁棒性。针对目前主流动态SLAM技术受限于系统需求和硬件性能,无法兼顾移动机器人定位精度和系统实时性的问题,提出一种基于YOLO v3和传感器融合的机器人定位建图系统。首先,建立融合编码器和视觉传感器的机器人运动模型,求解移动机器人位姿;然后,利用深度学习技术剔除复杂场景中的动态物体,并针对YOLO v3目标检测网络特点,采用多视图几何方法进行性能优化;最后,经测试,本系统相比DS_SLAM具有更优的轨迹精度,耗时更短。
展开更多
关键词
传感器融合
目标检测
动态物体
定位
多视图几何
在线阅读
下载PDF
职称材料
题名
基于YOLO v3和传感器融合的机器人定位建图系统
被引量:
5
1
作者
陈文峰
张学习
蔡述庭
熊晓明
机构
广东工业大学自动化学院
出处
《自动化与信息工程》
2021年第2期34-38,48,共6页
文摘
场景中的动态物体影响移动机器人定位算法的精度,使机器人无法建立蕴含场景信息的高精度地图,降低定位建图系统在复杂场景中的鲁棒性。针对目前主流动态SLAM技术受限于系统需求和硬件性能,无法兼顾移动机器人定位精度和系统实时性的问题,提出一种基于YOLO v3和传感器融合的机器人定位建图系统。首先,建立融合编码器和视觉传感器的机器人运动模型,求解移动机器人位姿;然后,利用深度学习技术剔除复杂场景中的动态物体,并针对YOLO v3目标检测网络特点,采用多视图几何方法进行性能优化;最后,经测试,本系统相比DS_SLAM具有更优的轨迹精度,耗时更短。
关键词
传感器融合
目标检测
动态物体
定位
多视图几何
Keywords
sensor fusion
object detection
dynamic object
location
multi view geometry
分类号
TP830.1 [自动化与计算机技术—检测技术与自动化装置]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于YOLO v3和传感器融合的机器人定位建图系统
陈文峰
张学习
蔡述庭
熊晓明
《自动化与信息工程》
2021
5
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部