期刊导航
期刊开放获取
vip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于XGBoost算法的遥感图像云检测
被引量:
5
1
作者
范霄
孔金玲
+2 位作者
钟炎伶
蒋镒竹
张静雅
《遥感技术与应用》
CSCD
北大核心
2023年第1期156-162,共7页
云检测是利用卫星遥感影像进行相关应用的基础。针对云检测过程容易受到复杂地表环境干扰的问题,提出了一种基于极限梯度提升(XGBoost)算法的云检测模型。该方法以TOA反射率、亮温和光谱指数等组建特征空间;然后,采用贝叶斯优化对XGBoos...
云检测是利用卫星遥感影像进行相关应用的基础。针对云检测过程容易受到复杂地表环境干扰的问题,提出了一种基于极限梯度提升(XGBoost)算法的云检测模型。该方法以TOA反射率、亮温和光谱指数等组建特征空间;然后,采用贝叶斯优化对XGBoost模型的超参数进行了调整。为检验XGBoost的云检测效果,选择不同云场景的Landsat 8遥感影像为测试数据,并把XGBoost、随机森林和决策树的云检测结果作对比。结果表明:本文提出的XGBoost云检测模型的云识别效果优于随机森林和决策树,展现了XGBoost在云检测中的潜力;且XGBoost的F1分数和Kappa系数分别可达73%和71%以上,实现了较准确的云检测,可为后续开展云检测研究提供一定的支持。
展开更多
关键词
云检测
XGBoost
随机森林
决策树
Landsat
8
原文传递
题名
基于XGBoost算法的遥感图像云检测
被引量:
5
1
作者
范霄
孔金玲
钟炎伶
蒋镒竹
张静雅
机构
长安大学地质工程与测绘学院
长安大学地球科学与资源学院
出处
《遥感技术与应用》
CSCD
北大核心
2023年第1期156-162,共7页
基金
国家自然科学基金项目(42071345)
陕西省重点研发计划(2020ZDLSF06-07)。
文摘
云检测是利用卫星遥感影像进行相关应用的基础。针对云检测过程容易受到复杂地表环境干扰的问题,提出了一种基于极限梯度提升(XGBoost)算法的云检测模型。该方法以TOA反射率、亮温和光谱指数等组建特征空间;然后,采用贝叶斯优化对XGBoost模型的超参数进行了调整。为检验XGBoost的云检测效果,选择不同云场景的Landsat 8遥感影像为测试数据,并把XGBoost、随机森林和决策树的云检测结果作对比。结果表明:本文提出的XGBoost云检测模型的云识别效果优于随机森林和决策树,展现了XGBoost在云检测中的潜力;且XGBoost的F1分数和Kappa系数分别可达73%和71%以上,实现了较准确的云检测,可为后续开展云检测研究提供一定的支持。
关键词
云检测
XGBoost
随机森林
决策树
Landsat
8
Keywords
Cloud Detection
XGBoost
Random Forest
Decision Tree
Landsat 8
分类号
P237 [天文地球—摄影测量与遥感]
TP75111 [自动化与计算机技术—检测技术与自动化装置]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于XGBoost算法的遥感图像云检测
范霄
孔金玲
钟炎伶
蒋镒竹
张静雅
《遥感技术与应用》
CSCD
北大核心
2023
5
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部