期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于CSBD-XGBoost的入侵检测模型研究
1
作者 李川 韩斌 王树鸿 《成都信息工程大学学报》 2026年第1期47-54,共8页
针对网络入侵检测领域中存在数据不平衡、特征冗余、特征信息提取不全以及检测模型单一导致的多类检测率低、误报率高等问题,提出一种基于CSBD-XGBoost的多融合入侵检测模型。使用RUS和BorderlineSMOTE采样算法对多数类和少数类样本进... 针对网络入侵检测领域中存在数据不平衡、特征冗余、特征信息提取不全以及检测模型单一导致的多类检测率低、误报率高等问题,提出一种基于CSBD-XGBoost的多融合入侵检测模型。使用RUS和BorderlineSMOTE采样算法对多数类和少数类样本进行采样,以平衡数据集。采用主成分分析方法进行数据降维,消除特征冗余。然后分别通过双层卷积神经网络、自注意力机制与双向门控单元模块,提取空间特征和时间特征,并将提取的特征传入深度神经网络,进行初次分类。最后通过极端梯度提升进行分类提升,以提高模型的分类性能。在CIC-IDS2018、CICIDS2017和NSL-KDD数据集上进行实验,准确率可达99.75%、99.55%、98.66%,模型具有较好的泛化性,检测效果优于传统机器学习和深度学习方法。 展开更多
关键词 BorderlineSMOTE 数据降维 卷积神经网络 双向门控单元 极端梯度提升
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部