针对自动驾驶边缘计算场景中行人车辆检测任务面临的模型计算复杂度高、参数量大导致的部署难题,该文提出一种轻量化神经网络模型YOMANet(Yolo Model Adaptation Network),基于异构FPGA平台设计YOMANet加速器(YOMANet-Accel),实现边缘...针对自动驾驶边缘计算场景中行人车辆检测任务面临的模型计算复杂度高、参数量大导致的部署难题,该文提出一种轻量化神经网络模型YOMANet(Yolo Model Adaptation Network),基于异构FPGA平台设计YOMANet加速器(YOMANet-Accel),实现边缘端人车检测的算法加速。YOMANet算法的主干网络采用轻量型网络MobileNetv2以大幅压缩模型参数量,颈部网络使用深度可分离卷积来代替常规卷积以提升训练速度,并在头部网络嵌入基于归一化的注意力模块(NAM)以增强网络对细节信息的捕获能力。为将YOMANet算法部署到现场可编程门阵列(FPGA)平台,该文针对卷积运算在任务层设计循环分块以调整内循环和外循环的顺序,在运算层对处理引擎单元(PE)设计乘加树,使得多个乘加运算可以同时执行,提高数据的并行计算效率。同时,针对数据存储过程采用双缓存机制来减少数据传输时延,对权重参数和激活函数进行int8数据量化以降低资源消耗。实验结果表明,YOMANet算法在训练平台上的检测精度和检测速度表现优异,对小目标和遮挡目标具备较好的检测能力,有效减少了误检和漏检情况的发生。算法部署到硬件平台后,YOMANet-Accel的目标检测效果保持在较高水平,硬件资源的能效比表现良好,有效发挥了FPGA的并行优势。展开更多
注意缺陷与多动障碍(Attention Deficit and Hyperactivity Disorder,ADHD)俗称多动症,是一种常见的儿童行为异常性疾病。由于目前多动症尚无明确病因,且多动症患者与正常儿童的脑部结构仅存在细微差异,导致临床医生难以进行有效诊断。...注意缺陷与多动障碍(Attention Deficit and Hyperactivity Disorder,ADHD)俗称多动症,是一种常见的儿童行为异常性疾病。由于目前多动症尚无明确病因,且多动症患者与正常儿童的脑部结构仅存在细微差异,导致临床医生难以进行有效诊断。针对此类疾病,本文提出一种基于ConvNeXt和注意力机制的卷积神经网络,用于区分多动症患者和正常儿童。首先对结构磁共振图像进行预处理,其次加载预训练模型,通过包含多维协作注意力的ConvNeXt网络进行深层特征提取,重构ConvNeXt输出层并得到最终分类结果。在ADHD-200数据集上进行验证,实验结果表明,其分类准确性达到97.3%,优于目前的主流方法,并且模型的热力图提示了前额叶等与疾病相关的脑部区域,因此可以作为一种有效、便捷的多动症辅助诊断方法。展开更多
文摘针对自动驾驶边缘计算场景中行人车辆检测任务面临的模型计算复杂度高、参数量大导致的部署难题,该文提出一种轻量化神经网络模型YOMANet(Yolo Model Adaptation Network),基于异构FPGA平台设计YOMANet加速器(YOMANet-Accel),实现边缘端人车检测的算法加速。YOMANet算法的主干网络采用轻量型网络MobileNetv2以大幅压缩模型参数量,颈部网络使用深度可分离卷积来代替常规卷积以提升训练速度,并在头部网络嵌入基于归一化的注意力模块(NAM)以增强网络对细节信息的捕获能力。为将YOMANet算法部署到现场可编程门阵列(FPGA)平台,该文针对卷积运算在任务层设计循环分块以调整内循环和外循环的顺序,在运算层对处理引擎单元(PE)设计乘加树,使得多个乘加运算可以同时执行,提高数据的并行计算效率。同时,针对数据存储过程采用双缓存机制来减少数据传输时延,对权重参数和激活函数进行int8数据量化以降低资源消耗。实验结果表明,YOMANet算法在训练平台上的检测精度和检测速度表现优异,对小目标和遮挡目标具备较好的检测能力,有效减少了误检和漏检情况的发生。算法部署到硬件平台后,YOMANet-Accel的目标检测效果保持在较高水平,硬件资源的能效比表现良好,有效发挥了FPGA的并行优势。
文摘注意缺陷与多动障碍(Attention Deficit and Hyperactivity Disorder,ADHD)俗称多动症,是一种常见的儿童行为异常性疾病。由于目前多动症尚无明确病因,且多动症患者与正常儿童的脑部结构仅存在细微差异,导致临床医生难以进行有效诊断。针对此类疾病,本文提出一种基于ConvNeXt和注意力机制的卷积神经网络,用于区分多动症患者和正常儿童。首先对结构磁共振图像进行预处理,其次加载预训练模型,通过包含多维协作注意力的ConvNeXt网络进行深层特征提取,重构ConvNeXt输出层并得到最终分类结果。在ADHD-200数据集上进行验证,实验结果表明,其分类准确性达到97.3%,优于目前的主流方法,并且模型的热力图提示了前额叶等与疾病相关的脑部区域,因此可以作为一种有效、便捷的多动症辅助诊断方法。