期刊导航
期刊开放获取
vip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
改进InceptionV3与迁移学习的太阳能电池板缺陷识别
被引量:
5
1
作者
史册
南新元
《计算机工程与科学》
CSCD
北大核心
2023年第4期646-653,共8页
传统识别方法对太阳能电池板表面缺陷的识别准确率低、速度慢,针对该情况,提出一种基于改进InceptionV3与迁移学习的识别方法。首先对采集到的太阳能电池板图像进行预处理;其次采用平衡因子δ,引入了新损失函数来改进InceptionV3神经网...
传统识别方法对太阳能电池板表面缺陷的识别准确率低、速度慢,针对该情况,提出一种基于改进InceptionV3与迁移学习的识别方法。首先对采集到的太阳能电池板图像进行预处理;其次采用平衡因子δ,引入了新损失函数来改进InceptionV3神经网络,保证了网络的识别率;最后结合迁移学习方法建立缺陷识别模型,进一步提升性能。仿真结果表明,该方法有效提升了太阳能电池板的缺陷识别准确率和速度,其识别准确率高达96.43%,相较于传统InceptionV3模型提升了2.45%,平均分类时间缩短了4.5 ms,表明此方法取得了很好的效果,且具有广阔的应用前景。
展开更多
关键词
太阳能电池板
神经网络
损失函数
InceptionV3
迁移学习
缺陷识别
在线阅读
下载PDF
职称材料
题名
改进InceptionV3与迁移学习的太阳能电池板缺陷识别
被引量:
5
1
作者
史册
南新元
机构
新疆大学电气工程学院
出处
《计算机工程与科学》
CSCD
北大核心
2023年第4期646-653,共8页
基金
国家自然科学基金(52065064)。
文摘
传统识别方法对太阳能电池板表面缺陷的识别准确率低、速度慢,针对该情况,提出一种基于改进InceptionV3与迁移学习的识别方法。首先对采集到的太阳能电池板图像进行预处理;其次采用平衡因子δ,引入了新损失函数来改进InceptionV3神经网络,保证了网络的识别率;最后结合迁移学习方法建立缺陷识别模型,进一步提升性能。仿真结果表明,该方法有效提升了太阳能电池板的缺陷识别准确率和速度,其识别准确率高达96.43%,相较于传统InceptionV3模型提升了2.45%,平均分类时间缩短了4.5 ms,表明此方法取得了很好的效果,且具有广阔的应用前景。
关键词
太阳能电池板
神经网络
损失函数
InceptionV3
迁移学习
缺陷识别
Keywords
solar panel
neural network
loss function
InceptionV3
transfer learning
defect recognition
分类号
TP349.4 [自动化与计算机技术—计算机系统结构]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
改进InceptionV3与迁移学习的太阳能电池板缺陷识别
史册
南新元
《计算机工程与科学》
CSCD
北大核心
2023
5
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部