期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
超混沌语音加密的网络传输 被引量:1
1
作者 万娟 吴楚 张源安 《计算机工程与应用》 CSCD 北大核心 2005年第18期154-156,共3页
介绍了基于超混沌的语音加密及其网络通信,文章提出了一种基于广义Henon映射的超混沌块加密算法,将广义Henon映射扩展并离散化、结合块加密达到很好加密效果,同时通过软件实现其加密算法和网络通信过程,最后对系统的保密性能做了详细分析。
关键词 超混沌 广义Henon映射 LYAPUNOV指数 块加密 语音 SOCKET 复杂度
在线阅读 下载PDF
甘肃电大校园网等级要求下安全体系建设 被引量:2
2
作者 鲁江 陈秀兰 《甘肃广播电视大学学报》 2019年第3期87-90,共4页
甘肃电大校园网的建设随着电大事业的发展不断状大和完善,但按照信息安全保护等级要求,网络安全体系建设还存在不足。当今网络攻击手段越来越高明,对学校的网络安全形成巨大的威胁,建设稳定安全的校园保护体系迫在眉睫。本文结合国家的... 甘肃电大校园网的建设随着电大事业的发展不断状大和完善,但按照信息安全保护等级要求,网络安全体系建设还存在不足。当今网络攻击手段越来越高明,对学校的网络安全形成巨大的威胁,建设稳定安全的校园保护体系迫在眉睫。本文结合国家的网络安全方案标准和信息安全等级保护要求,对学校网络安全体系建设进行探讨,以实现校园网的整体安全。 展开更多
关键词 等级保护 网络安全 网络威胁 解决方案
在线阅读 下载PDF
Network Security Situation Prediction Based on TCAN-BiGRU Optimized by SSA and IQPSO 被引量:1
3
作者 Junfeng Sun Chenghai Li +2 位作者 Yafei Song Peng Ni Jian Wang 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期993-1021,共29页
The accuracy of historical situation values is required for traditional network security situation prediction(NSSP).There are discrepancies in the correlation and weighting of the various network security elements.To ... The accuracy of historical situation values is required for traditional network security situation prediction(NSSP).There are discrepancies in the correlation and weighting of the various network security elements.To solve these problems,a combined prediction model based on the temporal convolution attention network(TCAN)and bi-directional gate recurrent unit(BiGRU)network is proposed,which is optimized by singular spectrum analysis(SSA)and improved quantum particle swarmoptimization algorithm(IQPSO).This model first decomposes and reconstructs network security situation data into a series of subsequences by SSA to remove the noise from the data.Furthermore,a prediction model of TCAN-BiGRU is established respectively for each subsequence.TCAN uses the TCN to extract features from the network security situation data and the improved channel attention mechanism(CAM)to extract important feature information from TCN.BiGRU learns the before-after status of situation data to extract more feature information from sequences for prediction.Besides,IQPSO is proposed to optimize the hyperparameters of BiGRU.Finally,the prediction results of the subsequence are superimposed to obtain the final predicted value.On the one hand,IQPSO compares with other optimization algorithms in the experiment,whose performance can find the optimum value of the benchmark function many times,showing that IQPSO performs better.On the other hand,the established prediction model compares with the traditional prediction methods through the simulation experiment,whose coefficient of determination is up to 0.999 on both sets,indicating that the combined prediction model established has higher prediction accuracy. 展开更多
关键词 Network security situation prediction SSA IQPSO TCAN-BiGRU
在线阅读 下载PDF
浅谈数据库系统安全 被引量:1
4
作者 陈亚峰 程方玉 《沿海企业与科技》 2009年第4期30-31,29,共3页
数据库系统是信息仓库,管理着大量的数据信息。可能受到来自多方面频繁的安全攻击,从而导致一系列安全问题。随着网络和数据库技术的发展,数据库系统的安全管理日益成为人们关注的焦点。数据库系统的安全框架可以划分为三个层次,各个层... 数据库系统是信息仓库,管理着大量的数据信息。可能受到来自多方面频繁的安全攻击,从而导致一系列安全问题。随着网络和数据库技术的发展,数据库系统的安全管理日益成为人们关注的焦点。数据库系统的安全框架可以划分为三个层次,各个层次是相辅相成的,防范重点和技术手段也不尽相同。 展开更多
关键词 数据库系统 安全 防范
在线阅读 下载PDF
Modified Metaheuristics with Weighted Majority Voting Ensemble Deep Learning Model for Intrusion Detection System
5
作者 Mahmoud Ragab Sultanah M.Alshammari Abdullah S.Al-Malaise Al-Ghamdi 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期2497-2512,共16页
The Internet of Things(IoT)system has confronted dramatic growth in high dimensionality and data traffic.The system named intrusion detection systems(IDS)is broadly utilized for the enhancement of security posture in ... The Internet of Things(IoT)system has confronted dramatic growth in high dimensionality and data traffic.The system named intrusion detection systems(IDS)is broadly utilized for the enhancement of security posture in an IT infrastructure.An IDS is a practical and suitable method for assuring network security and identifying attacks by protecting it from intrusive hackers.Nowadays,machine learning(ML)-related techniques were used for detecting intrusion in IoTs IDSs.But,the IoT IDS mechanism faces significant challenges because of physical and functional diversity.Such IoT features use every attribute and feature for IDS self-protection unrealistic and difficult.This study develops a Modified Metaheuristics with Weighted Majority Voting Ensemble Deep Learning(MM-WMVEDL)model for IDS.The proposed MM-WMVEDL technique aims to discriminate distinct kinds of attacks in the IoT environment.To attain this,the presented MM-WMVEDL technique implements min-max normalization to scale the input dataset.For feature selection purposes,the MM-WMVEDL technique exploits the Harris hawk optimization-based elite fractional derivative mutation(HHO-EFDM)technique.In the presented MM-WMVEDL technique,a Bi-directional long short-term memory(BiLSTM),extreme learning machine(ELM)and an ensemble of gated recurrent unit(GRU)models take place.A wide range of simulation analyses was performed on CICIDS-2017 dataset to exhibit the promising performance of the MM-WMVEDL technique.The comparison study pointed out the supremacy of the MM-WMVEDL method over other recent methods with accuracy of 99.67%. 展开更多
关键词 Internet of Things intrusion detection system machine learning ensemble deep learning metaheuristics
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部