In the framework of the STATIMON project, the complex research was done in which mathematical models of buildings' construction were created, defects identification method developed and also monitoring concept was co...In the framework of the STATIMON project, the complex research was done in which mathematical models of buildings' construction were created, defects identification method developed and also monitoring concept was composed according which automated monitoring system and software prototypes and structures were implemented. The strategic aim of the development of buildings' monitoring system was realized by mathematical and physical modelling of the faults (defects); analysis of characteristics sensitive to defects; selection of stability parameters and measurements; creation of automated system prototype; investigation of the methods applied for the monitoring system and diagnostics; development of software and separate elements of the system and approbation of the whole complex. Thorough evaluation of the technical state of the buildings numerical is executed using physical models and natural objects which support reliable state identification of the building and also helps to track changes.展开更多
Synchronized distributed measurements of mode parameters create a technical feasibility for development and implementing new technologies of control the mode stability and the admissibility of EPS (electric power sys...Synchronized distributed measurements of mode parameters create a technical feasibility for development and implementing new technologies of control the mode stability and the admissibility of EPS (electric power system) mode. Discussion will focus on different models obtained from data synchronized measurements for operational and automatic emergency control without EPS being totally controlled. According to the proposed technology, the generator's output power restrictions are determined in real-time by the terms a static stability using the generators' mode model as a multipole with connection nodes of generators' electromotive forces (the matrix of SMA (self and mutual admittances) of electromotive forces of generators). Potential applications of the technology are distribution network with the main substation and generators of commensurable capacity, and transmission network with large power plants (generators) distributed into the network. The one-level control system for all of generators with defining the generator's power limits relative to the main substation is implemented in the first case. In the second case, the two-level control system is brought in, based on the separation of large and small generation motion. The results of the method and technology efficiency verification are shown in the paper, by both computer simulations of the power system modes and its physical model.展开更多
In this paper,we carried out a combination of permanent scatterer and quasi permanent scatterer time-series InSAR image analyses to extract geometric information over the area of the Three Gorges Dam.For the first tim...In this paper,we carried out a combination of permanent scatterer and quasi permanent scatterer time-series InSAR image analyses to extract geometric information over the area of the Three Gorges Dam.For the first time,we measured and analyzed the deformation of the Three Gorges Dam and its surrounding area using 40 SAR images acquired from 2003 to 2008.Our results indicate that the temporal deformation of the left part of the dam has ceased and that the deformation of the dam was influenced by the changing level of the Yangtze River.Seasonal deformation due to varying temperature is also observed.The obtained results agree well with the published results of the Three Gorges Dam deformation obtained by employing conventional survey methods.We also found that there is an area of abnormal subsidence near Zigui County.This paper demonstrates the potential of time-series InSAR image analysis in the monitoring of dam stability and measurement of subsidence.展开更多
文摘In the framework of the STATIMON project, the complex research was done in which mathematical models of buildings' construction were created, defects identification method developed and also monitoring concept was composed according which automated monitoring system and software prototypes and structures were implemented. The strategic aim of the development of buildings' monitoring system was realized by mathematical and physical modelling of the faults (defects); analysis of characteristics sensitive to defects; selection of stability parameters and measurements; creation of automated system prototype; investigation of the methods applied for the monitoring system and diagnostics; development of software and separate elements of the system and approbation of the whole complex. Thorough evaluation of the technical state of the buildings numerical is executed using physical models and natural objects which support reliable state identification of the building and also helps to track changes.
文摘Synchronized distributed measurements of mode parameters create a technical feasibility for development and implementing new technologies of control the mode stability and the admissibility of EPS (electric power system) mode. Discussion will focus on different models obtained from data synchronized measurements for operational and automatic emergency control without EPS being totally controlled. According to the proposed technology, the generator's output power restrictions are determined in real-time by the terms a static stability using the generators' mode model as a multipole with connection nodes of generators' electromotive forces (the matrix of SMA (self and mutual admittances) of electromotive forces of generators). Potential applications of the technology are distribution network with the main substation and generators of commensurable capacity, and transmission network with large power plants (generators) distributed into the network. The one-level control system for all of generators with defining the generator's power limits relative to the main substation is implemented in the first case. In the second case, the two-level control system is brought in, based on the separation of large and small generation motion. The results of the method and technology efficiency verification are shown in the paper, by both computer simulations of the power system modes and its physical model.
基金supported by National Basic Research Program of China (Grant Nos. 2007CB714405, 2006CB701300)National Natural Science Foundation of China (Grant No. 40721001)Three Gorges Region Geologic Disaster Protection Major Research Program (Grant No. SXKY3-6-4)
文摘In this paper,we carried out a combination of permanent scatterer and quasi permanent scatterer time-series InSAR image analyses to extract geometric information over the area of the Three Gorges Dam.For the first time,we measured and analyzed the deformation of the Three Gorges Dam and its surrounding area using 40 SAR images acquired from 2003 to 2008.Our results indicate that the temporal deformation of the left part of the dam has ceased and that the deformation of the dam was influenced by the changing level of the Yangtze River.Seasonal deformation due to varying temperature is also observed.The obtained results agree well with the published results of the Three Gorges Dam deformation obtained by employing conventional survey methods.We also found that there is an area of abnormal subsidence near Zigui County.This paper demonstrates the potential of time-series InSAR image analysis in the monitoring of dam stability and measurement of subsidence.