探讨了基于远距离无线电(long range radio,LoRa)技术的配电网真型试验场数据传输与分析系统的设计。该系统架构采用传感层、网络层及应用层,通过单片机处理传感器数据,并通过LoRa网络传输至服务器。服务器端利用随机森林算法对数据进...探讨了基于远距离无线电(long range radio,LoRa)技术的配电网真型试验场数据传输与分析系统的设计。该系统架构采用传感层、网络层及应用层,通过单片机处理传感器数据,并通过LoRa网络传输至服务器。服务器端利用随机森林算法对数据进行分类、预测和预警。实证测试表明,该系统在复杂电磁环境下能够稳定、可靠地传输监测数据,且数据分析功能有效,提高了配电网真型试验场的数智化管理水平。展开更多
由于低照度配对图像的制作成本昂贵且难于制作,而非配对低照度图像增强方法不依赖配对图像数据因而更有实用价值,但其缺乏详细的监督信号导致输出图像存在全局曝光不一致、色彩失真和大量噪声等视觉退化问题,在实际应用中存在挑战.为了...由于低照度配对图像的制作成本昂贵且难于制作,而非配对低照度图像增强方法不依赖配对图像数据因而更有实用价值,但其缺乏详细的监督信号导致输出图像存在全局曝光不一致、色彩失真和大量噪声等视觉退化问题,在实际应用中存在挑战.为了更好地满足实用需求,提出一种基于全局一致的非配对低照度增强方法(unpaired low-light enhancement method based on global consistency,GCLLE).首先,该方法通过全局一致性保持模块(global consistency preserving module,GCPM)将编码器和解码器中相同尺度的特征重新建模并融合以矫正不同尺度的上下文信息,保证输出图像全局曝光调整一致性和全局结构一致性,使得图像亮度分布均匀并避免扭曲和失真;利用局部平滑和调制模块(local smoothing and modulation module,LSMM)学习一组局部的低阶曲线映射,为图像提供更宽的动态范围并进一步提高质量,实现真实和自然的增强效果;提出使用双路池化融合深层特征的深度特征强化模块(deep feature enhancement module,DFEM)压缩无关信息并突出更有区分度的编码特征,减少了不准确信息并使得解码器更容易捕获图像中的低强度信号,保留图像更多细节.不同于关注配对图像像素间一对一映射关系的配对增强方法,GCLLE通过缩小低照度图像与非配对正常照度图像之间的风格差异实现增强.在MIT和LSRW数据集上进行大量的实验,结果表明所提方法在多个客观指标上超过了现有典型低照度增强方法,具有更好的增强效果.展开更多
文摘探讨了基于远距离无线电(long range radio,LoRa)技术的配电网真型试验场数据传输与分析系统的设计。该系统架构采用传感层、网络层及应用层,通过单片机处理传感器数据,并通过LoRa网络传输至服务器。服务器端利用随机森林算法对数据进行分类、预测和预警。实证测试表明,该系统在复杂电磁环境下能够稳定、可靠地传输监测数据,且数据分析功能有效,提高了配电网真型试验场的数智化管理水平。
文摘由于低照度配对图像的制作成本昂贵且难于制作,而非配对低照度图像增强方法不依赖配对图像数据因而更有实用价值,但其缺乏详细的监督信号导致输出图像存在全局曝光不一致、色彩失真和大量噪声等视觉退化问题,在实际应用中存在挑战.为了更好地满足实用需求,提出一种基于全局一致的非配对低照度增强方法(unpaired low-light enhancement method based on global consistency,GCLLE).首先,该方法通过全局一致性保持模块(global consistency preserving module,GCPM)将编码器和解码器中相同尺度的特征重新建模并融合以矫正不同尺度的上下文信息,保证输出图像全局曝光调整一致性和全局结构一致性,使得图像亮度分布均匀并避免扭曲和失真;利用局部平滑和调制模块(local smoothing and modulation module,LSMM)学习一组局部的低阶曲线映射,为图像提供更宽的动态范围并进一步提高质量,实现真实和自然的增强效果;提出使用双路池化融合深层特征的深度特征强化模块(deep feature enhancement module,DFEM)压缩无关信息并突出更有区分度的编码特征,减少了不准确信息并使得解码器更容易捕获图像中的低强度信号,保留图像更多细节.不同于关注配对图像像素间一对一映射关系的配对增强方法,GCLLE通过缩小低照度图像与非配对正常照度图像之间的风格差异实现增强.在MIT和LSRW数据集上进行大量的实验,结果表明所提方法在多个客观指标上超过了现有典型低照度增强方法,具有更好的增强效果.