文摘针对传统的线性模型不足以描述分解炉复杂系统的问题,结合垃圾协同处置的背景,研究了一种基于极限学习机(extreme learning machine,ELM)的MISO Hammerstein-Wiener(multiple-input single-output Hammerstein-Wiener)模型分解炉温度建模及预测控制方法,用以实现分解炉温度的稳定控制。模型以喂煤量和垃圾衍生燃料流量(refuse derived fuel,RDF)为输入、分解炉温度为输出,并且采用ELM拟合非线性环节,ARMAX(autoregressive moving average with extra input)模型来描述动态线性环节,递推最小二乘法辨识出模型混合参数,奇异值分解得到模型的参数估计。分解炉控制方法采用两步法预测控制。首先,建立非线性环节逆模型;其次,采用广义预测控制算法得到中间变量;最后,中间变量经过非线性环节逆模型输出得到模型的控制量。仿真实验表明,ELM的引入提高了模型的拟合精度。与传统的预测控制相比,所提的控制方法稳定性更强、跟随性更好。