经颅磁刺激(transcranial magnetic stimulation, TMS)是一种神经调制方法,临床中凭借医生经验手动确定TMS线圈摆放位姿,导致线圈摆放位置和姿态不准确且重复定位精度差。针对上述问题,提出一种TMS线圈机器人辅助定位系统,使用RGB相机...经颅磁刺激(transcranial magnetic stimulation, TMS)是一种神经调制方法,临床中凭借医生经验手动确定TMS线圈摆放位姿,导致线圈摆放位置和姿态不准确且重复定位精度差。针对上述问题,提出一种TMS线圈机器人辅助定位系统,使用RGB相机替代导航系统中双目红外相机,采用一种基于神经网络的无标志物TMS线圈机器人辅助定位方法。搭建神经网络实现相机空间线圈姿态到操作臂空间关节角度的映射,并通过仿真数据训练验证了该神经网络架构适用于TMS线圈位姿摆放问题。随后,通过实验验证了该方法的可行性,同时表明训练的神经网络针对TMS线圈定位任务具有良好的泛化能力。最后,在笛卡儿空间的位姿验证结果显示TMS线圈三维位置平均误差为2.16 mm,总体姿态误差为0.055 rad,使用RGB相机的TMS线圈机器人辅助定位系统在精度上达到了与其他使用双目红外相机的科研或商用系统相同的水平,满足TMS临床治疗要求,具备临床应用的可行性。展开更多
传统的快速激光雷达里程计与建图(Fast LiDAR odometry and mapping,F-LOAM)算法虽然对特征点进行了两级去畸变处理,但仅对第1阶段的特征点进行去畸变,第2阶段的去畸变主要用于建图,这导致位姿估计的准确性不高。为了解决这一问题,提出...传统的快速激光雷达里程计与建图(Fast LiDAR odometry and mapping,F-LOAM)算法虽然对特征点进行了两级去畸变处理,但仅对第1阶段的特征点进行去畸变,第2阶段的去畸变主要用于建图,这导致位姿估计的准确性不高。为了解决这一问题,提出了一种改进的三级去畸变机制,结合基于体素化网格的分层降采样机制,以提高算法的实时性。经过改进的F-LOAM算法在KITTI数据集上的测试表现出色。三级去畸变机制和分层降采样策略不仅有效降低了计算负担,还确保了特征点的有效性和全局地图的精度。展开更多
随着同步定位与建图(simultaneous localization and mapping,SLAM)研究的深入,SLAM任务的复杂性和工作量随之增加,学者们的研究重点开始转向多机器人(或多车)SLAM。多个机器协同工作,提高了建图效率。进行多机器人(或多车)SLAM时,需将...随着同步定位与建图(simultaneous localization and mapping,SLAM)研究的深入,SLAM任务的复杂性和工作量随之增加,学者们的研究重点开始转向多机器人(或多车)SLAM。多个机器协同工作,提高了建图效率。进行多机器人(或多车)SLAM时,需将局部地图拼接构建全局地图。数字地图拼接技术通过对局部地图的重叠部分进行特征匹配和融合,实现了局部地图到全局地图的转换,提高了地图构建的精度和效率,在自动驾驶、多机器人系统、地理信息系统等领域具有重要的应用价值。本研究介绍地图拼接过程中常用的典型数字地图及其优缺点,分析地图拼接结果的影响因素;围绕同构和异构地图拼接两个方面,系统阐述数字地图的拼接方法;分析地图拼接技术存在的问题,指出异构地图拼接技术现存问题的解决思路。展开更多
针对现有跨垄式采茶机导航中心线提取效率低的问题,该研究提出一种基于机器视觉跟踪生长ROI茶垄间导航线提取算法。首先采用固定ROI(region of interest)方法,选取图像左下方区域为第一块ROI,在ROI内进行超绿指数灰度化,最大类方差法分...针对现有跨垄式采茶机导航中心线提取效率低的问题,该研究提出一种基于机器视觉跟踪生长ROI茶垄间导航线提取算法。首先采用固定ROI(region of interest)方法,选取图像左下方区域为第一块ROI,在ROI内进行超绿指数灰度化,最大类方差法分割茶垄道路与背景,通过形态学操作对图像进行增强与降噪,使用最大连通域检测操作提取ROI内的坐标信息与特征点,根据ROI提取的坐标信息动态生成ROI,直到整个图像中所有茶垄道路信息提取完成,最后采用最小二乘法获取跨垄式采茶机底盘在垄间行驶的导航线。该方法经过连续帧测试,处理一帧1920×1080像素图像的平均时间为18 ms,该研究算法与人工提取导航线的航向角平均误差为0.405°,标准差为0.463°,可在一定杂草、落叶干扰的情况下完成导航角提取。展开更多
文摘传统的快速激光雷达里程计与建图(Fast LiDAR odometry and mapping,F-LOAM)算法虽然对特征点进行了两级去畸变处理,但仅对第1阶段的特征点进行去畸变,第2阶段的去畸变主要用于建图,这导致位姿估计的准确性不高。为了解决这一问题,提出了一种改进的三级去畸变机制,结合基于体素化网格的分层降采样机制,以提高算法的实时性。经过改进的F-LOAM算法在KITTI数据集上的测试表现出色。三级去畸变机制和分层降采样策略不仅有效降低了计算负担,还确保了特征点的有效性和全局地图的精度。
文摘随着同步定位与建图(simultaneous localization and mapping,SLAM)研究的深入,SLAM任务的复杂性和工作量随之增加,学者们的研究重点开始转向多机器人(或多车)SLAM。多个机器协同工作,提高了建图效率。进行多机器人(或多车)SLAM时,需将局部地图拼接构建全局地图。数字地图拼接技术通过对局部地图的重叠部分进行特征匹配和融合,实现了局部地图到全局地图的转换,提高了地图构建的精度和效率,在自动驾驶、多机器人系统、地理信息系统等领域具有重要的应用价值。本研究介绍地图拼接过程中常用的典型数字地图及其优缺点,分析地图拼接结果的影响因素;围绕同构和异构地图拼接两个方面,系统阐述数字地图的拼接方法;分析地图拼接技术存在的问题,指出异构地图拼接技术现存问题的解决思路。
文摘针对现有跨垄式采茶机导航中心线提取效率低的问题,该研究提出一种基于机器视觉跟踪生长ROI茶垄间导航线提取算法。首先采用固定ROI(region of interest)方法,选取图像左下方区域为第一块ROI,在ROI内进行超绿指数灰度化,最大类方差法分割茶垄道路与背景,通过形态学操作对图像进行增强与降噪,使用最大连通域检测操作提取ROI内的坐标信息与特征点,根据ROI提取的坐标信息动态生成ROI,直到整个图像中所有茶垄道路信息提取完成,最后采用最小二乘法获取跨垄式采茶机底盘在垄间行驶的导航线。该方法经过连续帧测试,处理一帧1920×1080像素图像的平均时间为18 ms,该研究算法与人工提取导航线的航向角平均误差为0.405°,标准差为0.463°,可在一定杂草、落叶干扰的情况下完成导航角提取。