同步定位与建图(simultaneous localization and mapping,SLAM)是指在未知环境中同时实现自主移动机器人的定位和环境地图构建,其在机器人技术和自动驾驶等领域有着重要价值。本文首先回顾SLAM技术的发展历程,从早期的手工特征提取方法...同步定位与建图(simultaneous localization and mapping,SLAM)是指在未知环境中同时实现自主移动机器人的定位和环境地图构建,其在机器人技术和自动驾驶等领域有着重要价值。本文首先回顾SLAM技术的发展历程,从早期的手工特征提取方法到现代的深度学习驱动的解决方案。其中,基于神经辐射场(neural radiance fields,NeRF)的SLAM方法利用神经网络进行场景表征,进一步提高了建图的可视化效果。然而,这类方法在渲染速度上仍然面临挑战,限制了其实时应用的可能性。相比之下,基于高斯溅射(Gaussian splatting,GS)的SLAM方法以其实时的渲染速度和照片级的场景渲染效果,为SLAM领域带来新的研究热点和机遇。接着,按照RGB/RGBD、多模态数据以及语义信息3种不同应用类型对基于高斯溅射的SLAM方法进行分类和总结,并针对每种情况讨论相应SLAM方法的优势和局限性。最后,针对当前基于高斯溅射的SLAM方法面临的实时性、基准一致化、大场景的扩展性以及灾难性遗忘等问题进行分析,并对未来研究方向进行展望。通过这些探讨和分析,旨在为SLAM领域的研究人员和工程师提供全面的视角和启发,帮助分析和理解当前SLAM系统面临的关键问题,推动该领域的技术进步和应用拓展。展开更多