针对高冗余蛇形机械臂在三维空间中的路径规划问题,结合快速搜索随机树算法(Rapidly-exploring Random Tree,RRT),提出角度约束快速搜索随机树算法(Angle Constraint Rapidly-exploring Random Tree,AC-RRT)。首先根据空间中障碍物分布...针对高冗余蛇形机械臂在三维空间中的路径规划问题,结合快速搜索随机树算法(Rapidly-exploring Random Tree,RRT),提出角度约束快速搜索随机树算法(Angle Constraint Rapidly-exploring Random Tree,AC-RRT)。首先根据空间中障碍物分布关系提出一种步长与目标偏置概率的确定方法,提高算法的自适应能力;其次根据蛇形机械臂机械结构提出一种随机树延伸的角度约束模型,使规划路径更加符合机械臂的空间运动特性;最后引入一种目标点贪婪查询方法,缩短路径搜索时间、减少冗余节点。通过Matlab仿真并对比与RRT和RRT-connect算法之间的性能差异,使用V-REP软件结合机械臂模型对算法模拟仿真,验证算法的可行性。结果表明AC-RRT算法路径规划用时更短、路径代价更小、路径轨迹更符合机械臂的运动特性。展开更多
文摘针对高冗余蛇形机械臂在三维空间中的路径规划问题,结合快速搜索随机树算法(Rapidly-exploring Random Tree,RRT),提出角度约束快速搜索随机树算法(Angle Constraint Rapidly-exploring Random Tree,AC-RRT)。首先根据空间中障碍物分布关系提出一种步长与目标偏置概率的确定方法,提高算法的自适应能力;其次根据蛇形机械臂机械结构提出一种随机树延伸的角度约束模型,使规划路径更加符合机械臂的空间运动特性;最后引入一种目标点贪婪查询方法,缩短路径搜索时间、减少冗余节点。通过Matlab仿真并对比与RRT和RRT-connect算法之间的性能差异,使用V-REP软件结合机械臂模型对算法模拟仿真,验证算法的可行性。结果表明AC-RRT算法路径规划用时更短、路径代价更小、路径轨迹更符合机械臂的运动特性。