期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于生成式对抗网络及自注意力机制的无监督单目深度估计和视觉里程计 被引量:8
1
作者 叶星余 何元烈 汝少楠 《机器人》 EI CSCD 北大核心 2021年第2期203-213,共11页
提出了一种基于生成式对抗网络(GAN)和自注意力机制(self-attention mechanism)的单目视觉里程计方法,命名为SAGANVO(SAGAN visual odometry).该方法将生成式对抗网络学习框架应用于深度估计和视觉里程计任务中,通过GAN生成逼真的目标... 提出了一种基于生成式对抗网络(GAN)和自注意力机制(self-attention mechanism)的单目视觉里程计方法,命名为SAGANVO(SAGAN visual odometry).该方法将生成式对抗网络学习框架应用于深度估计和视觉里程计任务中,通过GAN生成逼真的目标帧来准确求解出场景的深度图和6自由度位姿.与此同时,为了提高深度网络对场景细节、边缘轮廓的学习能力,将自注意力机制结合到网络模型中.最后,在公开数据集KITTI上展现了所提出的模型和方法的高质量结果,并与现有方法进行了对比,证明了SAGANVO在深度估计和位姿估计中的性能优于现有的主流方法. 展开更多
关键词 单目视觉里程计 深度估计 生成式对抗网络 无监督深度学习
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部