云平台多容器集群数据量大、涉及种类多,导致异常状态监控难度大,为此提出基于Prometheus的监控算法。在云平台中,利用小波分解法获取多容器集群数据的实时状态序列,结合二叉树分解描述法划分不同类型的集群数据特征。根据Prometheus技...云平台多容器集群数据量大、涉及种类多,导致异常状态监控难度大,为此提出基于Prometheus的监控算法。在云平台中,利用小波分解法获取多容器集群数据的实时状态序列,结合二叉树分解描述法划分不同类型的集群数据特征。根据Prometheus技术具备的分布式储存管理特点划分监控空间,并设定监控类中心,对比多容器集群数据与该节点中心相似性,相似性最强的数据即异常。仿真实验证明,方法监控异常状态数据入侵信号在800~1200测试点位间出现大幅度变动,与实际number format exception (NFE)异常状态数据入侵监控结果十分接近,CPU耗用率较低,最小值为15%,对异常监控的响应耗时平均值为1.7 s,可为云平台稳定运行提供帮助。展开更多
文摘云平台多容器集群数据量大、涉及种类多,导致异常状态监控难度大,为此提出基于Prometheus的监控算法。在云平台中,利用小波分解法获取多容器集群数据的实时状态序列,结合二叉树分解描述法划分不同类型的集群数据特征。根据Prometheus技术具备的分布式储存管理特点划分监控空间,并设定监控类中心,对比多容器集群数据与该节点中心相似性,相似性最强的数据即异常。仿真实验证明,方法监控异常状态数据入侵信号在800~1200测试点位间出现大幅度变动,与实际number format exception (NFE)异常状态数据入侵监控结果十分接近,CPU耗用率较低,最小值为15%,对异常监控的响应耗时平均值为1.7 s,可为云平台稳定运行提供帮助。