随着新能源汽车行业的迅猛发展,车载控制器局域网络(Controller Area Network,CAN)安全防护研究的重要性日益递增。为检测CAN总线异常攻击,保障车辆安全,提出一种基于支持向量数据描述(Support Vector Data Description,SVDD)的车载CAN...随着新能源汽车行业的迅猛发展,车载控制器局域网络(Controller Area Network,CAN)安全防护研究的重要性日益递增。为检测CAN总线异常攻击,保障车辆安全,提出一种基于支持向量数据描述(Support Vector Data Description,SVDD)的车载CAN总线入侵检测方法。提取CAN报文标识符和数据域的数据作为特征信息,经过数据预处理和PCA降维后,输入SVDD模型进行入侵检测。在模型训练中,选用高斯核函数以提高SVDD入侵检测模型的拟合能力,减少模型的冗余面积。实验表明,该文方法在保证了较高召回率和F1分数的同时,比传统SVDD模型的准确率提升了9.66%,与其他四种模型对比,其综合性能更好。展开更多
文摘随着新能源汽车行业的迅猛发展,车载控制器局域网络(Controller Area Network,CAN)安全防护研究的重要性日益递增。为检测CAN总线异常攻击,保障车辆安全,提出一种基于支持向量数据描述(Support Vector Data Description,SVDD)的车载CAN总线入侵检测方法。提取CAN报文标识符和数据域的数据作为特征信息,经过数据预处理和PCA降维后,输入SVDD模型进行入侵检测。在模型训练中,选用高斯核函数以提高SVDD入侵检测模型的拟合能力,减少模型的冗余面积。实验表明,该文方法在保证了较高召回率和F1分数的同时,比传统SVDD模型的准确率提升了9.66%,与其他四种模型对比,其综合性能更好。