为提高零中频接收机中正交(in-phase quadrature,IQ)失配信号校正的收敛速度与鲁棒性,本文将Kalman滤波算法与盲源分离结构结合,提出了一种基于双通道Kalman滤波的校正算法。该算法通过状态空间建模与协方差自适应更新,能够在动态环境...为提高零中频接收机中正交(in-phase quadrature,IQ)失配信号校正的收敛速度与鲁棒性,本文将Kalman滤波算法与盲源分离结构结合,提出了一种基于双通道Kalman滤波的校正算法。该算法通过状态空间建模与协方差自适应更新,能够在动态环境下实现更高效、稳定的参数估计,从而实现对IQ失配信号的有效补偿。将本文算法与最小均方算法(least mean square,LMS)、归一化最小均方算法(normalized least mean square,NLMS)和仿射投影算法(affine projection algorithm,APA)进行对比仿真,结果显示,校正后信号的镜像抑制比(image rejection ratio,IRR)均达到约45 dB,但双通道Kalman滤波算法对应的IRR曲面图更加平滑,同时,16QAM和16PSK调制方式下该算法的误符号率最低,表明本文算法能够有效实现IQ失配校正,具有较好的稳定性。本文算法迭代约50次时,均方误差收敛趋近于0,而LMS、NLMS和APA算法则分别需要迭代约500次、400次和200次才能够收敛,表明该算法具有较好的收敛性。通过参数的敏感性仿真分析,在较大的参数范围内本文算法达到的IRR差别甚微,具有良好的鲁棒性。展开更多
正交时频空(Orthogonal Time Frequency Space,OTFS)调制因其在高多普勒频偏环境下的可靠传输能力,已成为低轨卫星等高动态通信场景的关键技术。然而,作为多载波调制技术,OTFS信号的高峰均功率比(Peak-to-Average Power Ratio,PAPR)易...正交时频空(Orthogonal Time Frequency Space,OTFS)调制因其在高多普勒频偏环境下的可靠传输能力,已成为低轨卫星等高动态通信场景的关键技术。然而,作为多载波调制技术,OTFS信号的高峰均功率比(Peak-to-Average Power Ratio,PAPR)易导致功放进入非线性工作状态,产生信号失真,影响通信可靠性和稳定性。格雷互补序列因其特殊的定义,使得该序列的最大峰均比不超过3 dB。基于里德-穆勒(Reed-Muller,RM)编码与格雷互补序列之间的特殊联系,提出了一种基于RM编码的OTFS系统的峰均功率比抑制方法。在发射端,首先利用RM编码将原始比特流序列编码转换为格雷互补序列形式,再进行星座映射与OTFS调制,得到低峰均功率比的发射信号。在接收端,为了实现对这种特殊编码信号的准确译码,设计了一种两步级联译码算法,通过陪集选择译码与单项式系数译码的级联实现了对具有格雷互补序列的RM编码的纠错译码,保证了通信传输的可靠性。仿真结果表明,在低轨卫星通信场景下,该编码方法可以将OTFS系统发射信号的峰均功率比抑制在3 dB以内;相较于OFDM系统,OTFS系统具有更强的鲁棒性;两步级联译码算法实现了较高信噪比(>6 dB)下更高的传输可靠性。上述方案的提出不仅为OTFS调制技术在星地高动态通信场景中的应用提供了有力的技术支持,也为未来多载波调制信号的峰均比抑制提供了新的参考。展开更多
文摘为提高零中频接收机中正交(in-phase quadrature,IQ)失配信号校正的收敛速度与鲁棒性,本文将Kalman滤波算法与盲源分离结构结合,提出了一种基于双通道Kalman滤波的校正算法。该算法通过状态空间建模与协方差自适应更新,能够在动态环境下实现更高效、稳定的参数估计,从而实现对IQ失配信号的有效补偿。将本文算法与最小均方算法(least mean square,LMS)、归一化最小均方算法(normalized least mean square,NLMS)和仿射投影算法(affine projection algorithm,APA)进行对比仿真,结果显示,校正后信号的镜像抑制比(image rejection ratio,IRR)均达到约45 dB,但双通道Kalman滤波算法对应的IRR曲面图更加平滑,同时,16QAM和16PSK调制方式下该算法的误符号率最低,表明本文算法能够有效实现IQ失配校正,具有较好的稳定性。本文算法迭代约50次时,均方误差收敛趋近于0,而LMS、NLMS和APA算法则分别需要迭代约500次、400次和200次才能够收敛,表明该算法具有较好的收敛性。通过参数的敏感性仿真分析,在较大的参数范围内本文算法达到的IRR差别甚微,具有良好的鲁棒性。
文摘正交时频空(Orthogonal Time Frequency Space,OTFS)调制因其在高多普勒频偏环境下的可靠传输能力,已成为低轨卫星等高动态通信场景的关键技术。然而,作为多载波调制技术,OTFS信号的高峰均功率比(Peak-to-Average Power Ratio,PAPR)易导致功放进入非线性工作状态,产生信号失真,影响通信可靠性和稳定性。格雷互补序列因其特殊的定义,使得该序列的最大峰均比不超过3 dB。基于里德-穆勒(Reed-Muller,RM)编码与格雷互补序列之间的特殊联系,提出了一种基于RM编码的OTFS系统的峰均功率比抑制方法。在发射端,首先利用RM编码将原始比特流序列编码转换为格雷互补序列形式,再进行星座映射与OTFS调制,得到低峰均功率比的发射信号。在接收端,为了实现对这种特殊编码信号的准确译码,设计了一种两步级联译码算法,通过陪集选择译码与单项式系数译码的级联实现了对具有格雷互补序列的RM编码的纠错译码,保证了通信传输的可靠性。仿真结果表明,在低轨卫星通信场景下,该编码方法可以将OTFS系统发射信号的峰均功率比抑制在3 dB以内;相较于OFDM系统,OTFS系统具有更强的鲁棒性;两步级联译码算法实现了较高信噪比(>6 dB)下更高的传输可靠性。上述方案的提出不仅为OTFS调制技术在星地高动态通信场景中的应用提供了有力的技术支持,也为未来多载波调制信号的峰均比抑制提供了新的参考。