为了保障网络环境的安全性,提出了基于集成式图卷积神经网络算法的网络入侵检测技术。研究方法采用随机梯度下降算法和均方根传播(Root Mean Square Propagation,RMSProp)优化器提升了检测模型的训练效率,强化了检测模型的分类效果。研...为了保障网络环境的安全性,提出了基于集成式图卷积神经网络算法的网络入侵检测技术。研究方法采用随机梯度下降算法和均方根传播(Root Mean Square Propagation,RMSProp)优化器提升了检测模型的训练效率,强化了检测模型的分类效果。研究结果显示,研究模型的入侵检测准确率为96.41%~97.18%。可见经过研究模型优化后,入侵检测技术在模型训练效率和模型训练精度上都有明显提升。研究模型可以根据访问来源进行数据分类,提升了入侵检测模型对访问行为的分类效果。同时,分类效果的提升优化了计算机对攻击行为的识别效率,使计算机的防御效果增强,有效保障了用户的网络安全环境。因此,研究为网络入侵行为的检测提供了一个识别效果较好的技术方法。展开更多
文摘为了保障网络环境的安全性,提出了基于集成式图卷积神经网络算法的网络入侵检测技术。研究方法采用随机梯度下降算法和均方根传播(Root Mean Square Propagation,RMSProp)优化器提升了检测模型的训练效率,强化了检测模型的分类效果。研究结果显示,研究模型的入侵检测准确率为96.41%~97.18%。可见经过研究模型优化后,入侵检测技术在模型训练效率和模型训练精度上都有明显提升。研究模型可以根据访问来源进行数据分类,提升了入侵检测模型对访问行为的分类效果。同时,分类效果的提升优化了计算机对攻击行为的识别效率,使计算机的防御效果增强,有效保障了用户的网络安全环境。因此,研究为网络入侵行为的检测提供了一个识别效果较好的技术方法。