The exponential growth of the Internet of Things(IoT)has introduced significant security challenges,with zero-day attacks emerging as one of the most critical and challenging threats.Traditional Machine Learning(ML)an...The exponential growth of the Internet of Things(IoT)has introduced significant security challenges,with zero-day attacks emerging as one of the most critical and challenging threats.Traditional Machine Learning(ML)and Deep Learning(DL)techniques have demonstrated promising early detection capabilities.However,their effectiveness is limited when handling the vast volumes of IoT-generated data due to scalability constraints,high computational costs,and the costly time-intensive process of data labeling.To address these challenges,this study proposes a Federated Learning(FL)framework that leverages collaborative and hybrid supervised learning to enhance cyber threat detection in IoT networks.By employing Deep Neural Networks(DNNs)and decentralized model training,the approach reduces computational complexity while improving detection accuracy.The proposed model demonstrates robust performance,achieving accuracies of 94.34%,99.95%,and 87.94%on the publicly available kitsune,Bot-IoT,and UNSW-NB15 datasets,respectively.Furthermore,its ability to detect zero-day attacks is validated through evaluations on two additional benchmark datasets,TON-IoT and IoT-23,using a Deep Federated Learning(DFL)framework,underscoring the generalization and effectiveness of the model in heterogeneous and decentralized IoT environments.Experimental results demonstrate superior performance over existing methods,establishing the proposed framework as an efficient and scalable solution for IoT security.展开更多
Due to the growth of smart cities,many real-time systems have been developed to support smart cities using Internet of Things(IoT)and emerging technologies.They are formulated to collect the data for environment monit...Due to the growth of smart cities,many real-time systems have been developed to support smart cities using Internet of Things(IoT)and emerging technologies.They are formulated to collect the data for environment monitoring and automate the communication process.In recent decades,researchers have made many efforts to propose autonomous systems for manipulating network data and providing on-time responses in critical operations.However,the widespread use of IoT devices in resource-constrained applications and mobile sensor networks introduces significant research challenges for cybersecurity.These systems are vulnerable to a variety of cyberattacks,including unauthorized access,denial-of-service attacks,and data leakage,which compromise the network’s security.Additionally,uneven load balancing between mobile IoT devices,which frequently experience link interferences,compromises the trustworthiness of the system.This paper introduces a Multi-Agent secured framework using lightweight edge computing to enhance cybersecurity for sensor networks,aiming to leverage artificial intelligence for adaptive routing and multi-metric trust evaluation to achieve data privacy and mitigate potential threats.Moreover,it enhances the efficiency of distributed sensors for energy consumption through intelligent data analytics techniques,resulting in highly consistent and low-latency network communication.Using simulations,the proposed framework reveals its significant performance compared to state-of-the-art approaches for energy consumption by 43%,latency by 46%,network throughput by 51%,packet loss rate by 40%,and denial of service attacks by 42%.展开更多
基金supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2025R97)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘The exponential growth of the Internet of Things(IoT)has introduced significant security challenges,with zero-day attacks emerging as one of the most critical and challenging threats.Traditional Machine Learning(ML)and Deep Learning(DL)techniques have demonstrated promising early detection capabilities.However,their effectiveness is limited when handling the vast volumes of IoT-generated data due to scalability constraints,high computational costs,and the costly time-intensive process of data labeling.To address these challenges,this study proposes a Federated Learning(FL)framework that leverages collaborative and hybrid supervised learning to enhance cyber threat detection in IoT networks.By employing Deep Neural Networks(DNNs)and decentralized model training,the approach reduces computational complexity while improving detection accuracy.The proposed model demonstrates robust performance,achieving accuracies of 94.34%,99.95%,and 87.94%on the publicly available kitsune,Bot-IoT,and UNSW-NB15 datasets,respectively.Furthermore,its ability to detect zero-day attacks is validated through evaluations on two additional benchmark datasets,TON-IoT and IoT-23,using a Deep Federated Learning(DFL)framework,underscoring the generalization and effectiveness of the model in heterogeneous and decentralized IoT environments.Experimental results demonstrate superior performance over existing methods,establishing the proposed framework as an efficient and scalable solution for IoT security.
基金supported by the Deanship of Graduate Studies and Scientific Research at Jouf University.
文摘Due to the growth of smart cities,many real-time systems have been developed to support smart cities using Internet of Things(IoT)and emerging technologies.They are formulated to collect the data for environment monitoring and automate the communication process.In recent decades,researchers have made many efforts to propose autonomous systems for manipulating network data and providing on-time responses in critical operations.However,the widespread use of IoT devices in resource-constrained applications and mobile sensor networks introduces significant research challenges for cybersecurity.These systems are vulnerable to a variety of cyberattacks,including unauthorized access,denial-of-service attacks,and data leakage,which compromise the network’s security.Additionally,uneven load balancing between mobile IoT devices,which frequently experience link interferences,compromises the trustworthiness of the system.This paper introduces a Multi-Agent secured framework using lightweight edge computing to enhance cybersecurity for sensor networks,aiming to leverage artificial intelligence for adaptive routing and multi-metric trust evaluation to achieve data privacy and mitigate potential threats.Moreover,it enhances the efficiency of distributed sensors for energy consumption through intelligent data analytics techniques,resulting in highly consistent and low-latency network communication.Using simulations,the proposed framework reveals its significant performance compared to state-of-the-art approaches for energy consumption by 43%,latency by 46%,network throughput by 51%,packet loss rate by 40%,and denial of service attacks by 42%.