期刊文献+
共找到13,740篇文章
< 1 2 250 >
每页显示 20 50 100
多尺度特征提取与融合的红外图像增强算法 被引量:6
1
作者 李牧 张一朗 柯熙政 《红外与激光工程》 北大核心 2025年第2期240-253,共14页
针对传统的特征融合算法多从单一的尺度上抽取图像的特征,并且在红外图像亮度增强过程中可能导致局部特征信息的丢失与退化而引起红外图像细节分辨率不高的问题,提出了多尺度特征提取与融合的红外图像增强算法,主要由多尺度自适应特征... 针对传统的特征融合算法多从单一的尺度上抽取图像的特征,并且在红外图像亮度增强过程中可能导致局部特征信息的丢失与退化而引起红外图像细节分辨率不高的问题,提出了多尺度特征提取与融合的红外图像增强算法,主要由多尺度自适应特征提取模块、亮度增强迭代函数以及特征融合和图像重建模块构成。首先,提出的多尺度自适应特征提取融合模块保存和融合了来自不同卷积层特征的多尺度信息;然后,改进的亮度增强迭代函数使用了融合特征作为逐像素参数,用于红外图像亮度增强;最后,通过提出的特征融合和图像重建模块,增强了特征在网络中的传播能力,并保持了局部信息的完整性。实验结果表明:多尺度特征提取与融合的红外图像增强算法与其它表现较好的网络相比,峰值信噪比、余弦相似度以及信息熵分别提高了3.7%、1.3%、1.6%。且在测试数据集上根据引用的火灾隐患检测算法判断是否存在火灾隐患进行早期火灾检测,其准确率为97.86%,说明了提出的多尺度特征提取与融合的红外图像增强算法的有效性与可行性。 展开更多
关键词 红外图像 图像增强 深度学习 特征融合 注意力机制
原文传递
面向深度模型的对抗攻击与对抗防御技术综述 被引量:6
2
作者 王文萱 汪成磊 +2 位作者 齐慧慧 叶梦昊 张艳宁 《信号处理》 北大核心 2025年第2期198-223,共26页
深度学习技术已广泛应用于图像分类和目标检测等计算机视觉核心任务,并取得了瞩目的进展。然而,深度学习模型因其高度的复杂性与内在的不确定性,极易成为对抗样本攻击的靶标。攻击者巧妙地利用数据中细微的、精心设计的扰动,诱导模型以... 深度学习技术已广泛应用于图像分类和目标检测等计算机视觉核心任务,并取得了瞩目的进展。然而,深度学习模型因其高度的复杂性与内在的不确定性,极易成为对抗样本攻击的靶标。攻击者巧妙地利用数据中细微的、精心设计的扰动,诱导模型以极高的置信度输出错误结果,此类对抗样本对实际应用场景中模型的可靠性及安全性构成了严峻的挑战与潜在威胁。例如,攻击者可利用对抗眼镜误导人脸识别系统,导致身份误判,进而实施非法入侵、身份冒用等威胁公共安全和个人隐私的行为;也可对自动驾驶系统的监控数据添加对抗噪声,虽不破坏交通工具本身特征,却可能导致漏检重要交通工具,引发交通混乱甚至事故,造成严重后果。本文旨在梳理当前对抗攻击与对抗防御技术的研究现状。具体而言,内容涵盖以下三个方面:1)在概述对抗样本基本概念和分类的基础上,剖析了多种对抗攻击的形式和策略,并举例介绍了具有代表性的经典对抗样本生成方法;2)阐述对抗样本的防御方法,从模型优化、数据优化和附加网络三个方向系统梳理了当前提高模型对抗鲁棒性的各类算法,分析了各类防御方法的创新性和有效性;3)介绍对抗攻击和对抗防御的应用实例,阐述了大模型时代对抗攻击和防御的发展现状,分析了在实际应用中遇到的挑战及解决方案。最后本文对当前对抗攻击与防御方法进行了总结分析,并展望了该领域内未来的研究方向。 展开更多
关键词 对抗攻击 对抗防御 深度学习 计算机视觉 可信人工智能
在线阅读 下载PDF
利用多层次特征融合网络的图像异常检测算法 被引量:2
3
作者 唐俊 左金梅 +2 位作者 王科 张艳 王年 《国防科技大学学报》 北大核心 2025年第2期173-182,共10页
图像异常检测旨在识别并定位图像中的异常区域,针对现有算法中不同层次特征信息利用不充分的问题,提出了基于多层次特征融合网络的图像异常检测算法。通过使用融合了异常先验知识的伪异常数据生成算法,对训练集进行了异常数据扩充,将异... 图像异常检测旨在识别并定位图像中的异常区域,针对现有算法中不同层次特征信息利用不充分的问题,提出了基于多层次特征融合网络的图像异常检测算法。通过使用融合了异常先验知识的伪异常数据生成算法,对训练集进行了异常数据扩充,将异常检测任务转化为监督学习任务;构建了多层次特征融合网络,将神经网络中不同层次特征进行融合,丰富了特征中的低层纹理信息和高层语义信息,使得用于异常检测的特征更具区分性;训练时,设计了分数约束损失和一致性约束损失,并结合特征约束损失对整个网络模型进行训练。实验结果表明,MVTec数据集上图像级检测接收机工作特性曲线下面积(area under the receiver operating characteristic, AUROC)平均值为98.7%,像素级定位AUROC平均值为97.9%,每区域重叠率平均值为94.2%,均高于现有的异常检测算法。 展开更多
关键词 图像异常检测 伪异常 多层次特征融合 一致性约束
在线阅读 下载PDF
基于Enhanced Zero-DCE++的水下选通图像增强技术研究 被引量:2
4
作者 田青 赵宇 +1 位作者 张正 羊强 《电子测量技术》 北大核心 2025年第1期166-174,共9页
水下距离选通成像技术具有不受环境光影响、作用距离远的优点,已成为众多学者关注的研究领域。然而,水下选通图像存在光照分布不均、噪点较多等问题,导致成像的清晰度受到影响。针对上述问题,在现有的低照度增强算法Zero-DCE++基础上,... 水下距离选通成像技术具有不受环境光影响、作用距离远的优点,已成为众多学者关注的研究领域。然而,水下选通图像存在光照分布不均、噪点较多等问题,导致成像的清晰度受到影响。针对上述问题,在现有的低照度增强算法Zero-DCE++基础上,本文提出了一种Enhanced Zero-DCE++算法。首先,引入改进的核选择模块,使用深度可分离卷积和ReLU6激活函数替换标准卷积和ReLU激活函数,改善水下选通图像光圈部分过曝光的问题;其次,采用改进的HWAB半小波注意力模块,使用CBAM替代DAU双注意力单元,在小波域中区分噪声和真实特征,增强特征区分能力,提高成像清晰度;最后,加入ADNet噪声去除模块,有效抑制Zero-DCE++在低光照增强后的噪声。在自采的水下选通数据集上的实验结果表明,相比于Zero-DCE++模型,Enhanced Zero-DCE++模型处理结果的峰值信噪比提升约0.65 dB、图像信息熵提升约0.23,证明了模型的有效性和可行性。 展开更多
关键词 图像增强 水下距离选通图像 低照度图像 深度学习
原文传递
基于卷积神经网络的轻量高效图像隐写 被引量:3
5
作者 段新涛 白鹿伟 +4 位作者 徐凯欧 张萌 保梦茹 武银行 秦川 《应用科学学报》 北大核心 2025年第1期80-93,共14页
基于深度学习的图像隐写方法,因存在模型参数量和计算量大等问题,而面临高参数和计算负载的挑战,为此提出了一种轻量高效的图像隐写方法。首先在编码器和解码器中引入Ghost模块,降低了编码器和解码器的参数量和计算量。其次提出了一个... 基于深度学习的图像隐写方法,因存在模型参数量和计算量大等问题,而面临高参数和计算负载的挑战,为此提出了一种轻量高效的图像隐写方法。首先在编码器和解码器中引入Ghost模块,降低了编码器和解码器的参数量和计算量。其次提出了一个多尺度特征融合模块,用以捕捉多维数据中的复杂关系。最后提出了一个新颖的混合损失函数,可在保持模型不变的情况下提升图像隐写质量。实验结果表明,所提方法在256×256像素的图像上峰值信噪比达到47.59 dB。与目前最优的图像隐写方法相比,所提方法的隐写质量提升1.7 dB,参数量减少77%,计算量减少91%,在隐写质量上有较优的表现,同时模型的参数量和计算量大大降低,实现了模型的轻量高效化。 展开更多
关键词 图像隐写 深度学习 多尺度特征融合 混合损失函数
在线阅读 下载PDF
基于LDF-YOLO的小目标检测方法 被引量:1
6
作者 刘洋 任旭虎 +1 位作者 刘宝弟 刘伟锋 《电子测量技术》 北大核心 2025年第12期156-165,共10页
小目标检测是计算机视觉中极具挑战性的任务,现有的检测算法复杂度高、计算量大且检测精度低导致了漏检和误检的问题,本文针对小目标的独有特征提出了LDF-YOLO算法以提高检测精度并降低漏检率。首先是对Head部分的改进,在特征融合网络... 小目标检测是计算机视觉中极具挑战性的任务,现有的检测算法复杂度高、计算量大且检测精度低导致了漏检和误检的问题,本文针对小目标的独有特征提出了LDF-YOLO算法以提高检测精度并降低漏检率。首先是对Head部分的改进,在特征融合网络中引入了特征转换模块,设计了针对微小物体的检测头LP-Detect;其次,借鉴残差门控机制和局部特征增强机制设计了LR-C2f模块,增强模型提取局部特征的能力;最后,融入了局部特征增强模块,以强化骨干网络提取小目标信息的能力。在公开数据集Tiny Person上,LDF-YOLO比原YOLOv8在mAP0.5上提高了4.5%,召回率提高了5.5%,实验结果验证了改进方法的有效性,同时在NWPU VHR-10和VisDrone2019数据集上做了泛化对比实验,经实验表明各项指标均有提升。 展开更多
关键词 小目标检测 YOLOv8 残差门控机制 特征转换 特征融合
原文传递
特征级语义感知引导的多模态图像融合算法 被引量:1
7
作者 张梅 金叶 +1 位作者 朱金辉 贺霖 《电子与信息学报》 北大核心 2025年第8期2909-2918,共10页
在自动驾驶领域,红外和可见光的融合图像因其能够提供显著目标和丰富的纹理细节而备受关注。然而现有的大部分融合算法单方面关注融合图像的视觉质量和评价指标,而忽略了高级视觉任务的需求。另外,虽然一些融合方法尝试结合高级视觉任务... 在自动驾驶领域,红外和可见光的融合图像因其能够提供显著目标和丰富的纹理细节而备受关注。然而现有的大部分融合算法单方面关注融合图像的视觉质量和评价指标,而忽略了高级视觉任务的需求。另外,虽然一些融合方法尝试结合高级视觉任务,但是其效果受限于语义先验和融合任务之间的交互不足且没有考虑到不同特征差异性的影响。因此,该文提出了特征级语义感知引导的多模态图像融合算法,使语义先验知识与融合任务进行充分交互,提高融合结果在后续的分割任务中的性能。对于语义特征和融合图像特征两者的差异性,提出了双特征交互模块,以实现不同特征的充分交互和选择。对于红外和可见光两种不同模态特征的差异性,提出了多源空间注意力融合模块,以实现不同模态信息的有效集成和互补。该文在3个公共数据集上进行了实验,结果表明该方法的融合结果优于其他方法且泛化能力较好,而且在各种融合算法联合分割任务的性能比较实验中也表明了该方法在分割任务中的优越性。 展开更多
关键词 图像融合 联合分割任务 语义感知 特征级引导
在线阅读 下载PDF
基于改进YOLOv8的轻量化皮革缺陷检测方法 被引量:2
8
作者 方明 张娇 +1 位作者 徐晶 王绎覃 《电子测量技术》 北大核心 2025年第1期111-118,共8页
为了解决YOLOv8参数量过大影响检测速度等问题,本文以汽车座椅皮革为样本对汽车座椅表面进行缺陷检测,提出了一种轻量化的基于YOLOv8框架的皮革缺陷检测算法。首先,将YOLOv8原本的主干网络替换成轻量化网络StarNet, StarNet通过星型运... 为了解决YOLOv8参数量过大影响检测速度等问题,本文以汽车座椅皮革为样本对汽车座椅表面进行缺陷检测,提出了一种轻量化的基于YOLOv8框架的皮革缺陷检测算法。首先,将YOLOv8原本的主干网络替换成轻量化网络StarNet, StarNet通过星型运算实现了高维和非线性特征空间的映射,从而在紧凑的网络结构和较低的能耗下展示了出色的性能和低延迟。其次,将原本的检测头替换成轻量级共享卷积检测头,通过使用共享卷积,可以大幅减少参数数量,使得模型更轻便,以便于在资源受限的设备上部署。最后,将颈部网络的C2f模块替换成C2f_Star模块,在网络更加轻量化的同时,将不同尺度的特征图进行融合,提高目标检测的准确性和鲁棒性。在自制的HSV-Leather数据集上对模型进行实验验证,结果表明,改进后的YOLOv8-Leather检测模型性能优于YOLOv8n模型。对比YOLOv8n模型,改进后的模型在参数量上降低了57%,检测速度提升了20%,模型权重降低了52%,运算量降低了53%。实验验证了改进后的模型在解决皮革表面缺陷检测问题上的可行性。 展开更多
关键词 皮革缺陷检测 YOLOv8 目标检测 轻量化 StarNet
原文传递
引入双曲正切阈值函数的平稳小波变换心电信号去噪方法 被引量:4
9
作者 王海勇 丁顾霏 《计算机科学》 北大核心 2025年第5期179-186,共8页
在心电信号的采集过程中,各种噪声充斥在心电信号中,这会使心电信号变得难以识别,从而影响医务人员的诊断。对心电信号进行去噪处理,是心电信号研究的重要环节。基于平稳小波变换的技术,针对平稳小波去噪过程中硬阈值、软阈值的缺陷,提... 在心电信号的采集过程中,各种噪声充斥在心电信号中,这会使心电信号变得难以识别,从而影响医务人员的诊断。对心电信号进行去噪处理,是心电信号研究的重要环节。基于平稳小波变换的技术,针对平稳小波去噪过程中硬阈值、软阈值的缺陷,提出一种可变参数下的双曲正切函数(SWTaVHT)来对心电信号进行去噪;同时,为了防止在去噪过程中丢失一些高频信息段,引入利用R峰位置信息辅助的修正方法,以更好地保留有用的信号特征。为了评估SWTaVHT的有效性,在公开数据库MIT-BIH上与现有的方法进行对比实验。结果表明,去噪之后的信噪比(SNR)、均方根误差(RMSE)和均方根差百分比(PRD)均优于现有方法。SWTaVHT在不改变原始信号振幅的情况下,对心电信号数据进行去噪处理,其效果优于现有方法。 展开更多
关键词 心电信号 阈值函数 平稳小波变换 R峰校正 去噪
在线阅读 下载PDF
基于多层注意力和度量学习的商品识别方法 被引量:1
10
作者 李婕 张新月 +2 位作者 涂静敏 陈记文 李礼 《电子测量技术》 北大核心 2025年第1期137-144,共8页
针对自动售货柜场景中存在的复杂背景和商品包装高度相似导致的识别难题,提出了一种融合多尺度注意力机制和度量学习的商品识别方法。首先,基于ResNet层级结构引入多头自注意力,充分挖掘卷积神经网络(CNN)多尺度特征提取优势和Transfor... 针对自动售货柜场景中存在的复杂背景和商品包装高度相似导致的识别难题,提出了一种融合多尺度注意力机制和度量学习的商品识别方法。首先,基于ResNet层级结构引入多头自注意力,充分挖掘卷积神经网络(CNN)多尺度特征提取优势和Transformer全局建模能力,并设计一种新的多尺度空洞注意力,使模型关注到相似包装中商标形状和局部纹理等局部特征,以及上下文全局特征;其次设计降采样多尺度特征融合策略,有效提高算法的多尺度特征表达能力;最后采用ArcFace损失函数以增强模型的识别能力。为了验证所提出方法的有效性,构建了一个真实场景下的商品数据集,由自动售货柜的顶视摄像头采集。实验结果表明,该方法在Commodity 553数据集上的MAP@1准确率达到87.4%,优于当前的主流识别方法,可实现更精确的商品识别。 展开更多
关键词 商品识别 深度学习 注意力机制 度量学习
原文传递
上下文感知多感受野融合网络的定向遥感目标检测 被引量:1
11
作者 姚婷婷 肇恒鑫 +1 位作者 冯子豪 胡青 《电子与信息学报》 北大核心 2025年第1期233-243,共11页
以广距鸟瞰视角拍摄获取的遥感图像通常具有目标种类多、尺度变化大以及背景信息丰富等特点,为目标检测任务带来巨大挑战。针对遥感图像成像特点,该文设计一种上下文感知多感受野融合网络,通过充分挖掘深度网络中遥感图像在不同尺寸特... 以广距鸟瞰视角拍摄获取的遥感图像通常具有目标种类多、尺度变化大以及背景信息丰富等特点,为目标检测任务带来巨大挑战。针对遥感图像成像特点,该文设计一种上下文感知多感受野融合网络,通过充分挖掘深度网络中遥感图像在不同尺寸特征描述下所包含的上下文关联信息,提高图像特征描述力,进而提升遥感目标检测精度。首先,在特征金字塔前4层网络中构建了感受野扩张模块,通过扩大网络在不同尺度特征图上的感受野范围,增强网络对不同尺度遥感目标的感知能力;进一步,构建了高层特征聚合模块,通过将特征金字塔网络中高层语义信息聚合到低层特征中,从而将特征图中所包含的多尺度上下文信息进行有效融合;最后,在双阶段定向目标检测框架下设计了特征细化区域建议网络。通过对一阶段提案进行精细化处理,提升提案准确性,进而提高二阶段兴趣区域对齐网络得到的不同成像方向下的遥感目标检测性能。在公测数据集DIOR-R和HRSC2016上的定性和定量的对比实验结果证明,所提方法对不同种类和尺度大小的遥感目标均能实现更加准确的检测。 展开更多
关键词 遥感图像 深度学习 目标检测 多感受野融合
在线阅读 下载PDF
基于改进YOLOv7-Tiny的车辆检测研究 被引量:1
12
作者 李昊璇 辛拓宇 《电子设计工程》 2025年第1期181-185,共5页
为了提高计算机识别检测车辆的准确度与速度,提出了一种基于改进YOLOv7-Tiny的车辆检测算法。在众多目标检测模型中,YOLOv7有着非常快的检测速度和较高的检测精度,非常适用于实时检测任务。在原YOLOv7-Tiny模型的基础上进行改进,将最浅... 为了提高计算机识别检测车辆的准确度与速度,提出了一种基于改进YOLOv7-Tiny的车辆检测算法。在众多目标检测模型中,YOLOv7有着非常快的检测速度和较高的检测精度,非常适用于实时检测任务。在原YOLOv7-Tiny模型的基础上进行改进,将最浅层ELAN-T模块纳入特征金字塔,通过跳跃连接的方式将浅层特征与深层特征跨层融合,使输出的特征信息更加丰富。同时引入SE注意力机制,将计算资源分配给对当前任务更为关键的信息。并且更换了非线性激活函数HardSwish,以提高模型的表达能力。在华为发布的2D自动驾驶数据集SODA10M上进行实验,结果表明,改进后的模型对所有四种目标的检测精度都有所提高,平均精度mAP@0.5达到了66.1%,比原YOLOv7-Tiny模型61.0%提升了5.1%。 展开更多
关键词 目标检测 车辆检测 YOLOv7 注意力机制 深度学习
在线阅读 下载PDF
QCD-YOLO:一种轻量化石英坩埚内壁缺陷检测方法 被引量:1
13
作者 赵谦 郭乔峰 +2 位作者 尹怡晨 陶涌 黄晶晶 《激光杂志》 北大核心 2025年第7期69-76,共8页
现有石英坩埚内壁缺陷检测方式以人工目检为主,准确度低且效率低下。深度学习技术可显著提升工业缺陷检测的精度与效率,同时石英坩埚质检产线终端设备计算资源有限,为此提出了一种轻量化石英坩埚内壁缺陷检测模型QCD-YOLO。在YOLOv8n的... 现有石英坩埚内壁缺陷检测方式以人工目检为主,准确度低且效率低下。深度学习技术可显著提升工业缺陷检测的精度与效率,同时石英坩埚质检产线终端设备计算资源有限,为此提出了一种轻量化石英坩埚内壁缺陷检测模型QCD-YOLO。在YOLOv8n的基础上利用部分卷积(Partial Convolution,PConv)设计全新的C2f结构,降低模型计算量与参数量;使用ADown降采样模块替换主干网络中Conv模块,提升小目标缺陷检测能力;引入多尺度空洞注意力(Multi-Scale Dilated Attention,MSDA),不增加额外计算成本的情况下高效聚合不同尺度的语义信息;设计Inner-Shape IoU损失函数替换原损失函数。实验结果表明,改进模型在自建石英坩埚内壁缺陷数据集上mAP达到98.1%,相较于原模型YOLOv8n提升1.2%,同时,参数量下降0.83 M,计算量下降2.2 G,权重下降1.58 MB,可满足检测精度要求,同时更容易部署至石英坩埚质检产线。 展开更多
关键词 石英坩埚 YOLOv8 轻量化 缺陷检测
原文传递
边缘引导的双分支网络SAR图像相干斑抑制方法
14
作者 朱磊 姚同钰 +3 位作者 车晨洁 姚丽娜 张博 潘杨 《北京航空航天大学学报》 北大核心 2025年第6期1852-1862,共11页
为进一步提升深度学习方法对合成孔径雷达(SAR)图像相干斑的抑制与边缘保持性能,提出了一种边缘引导的双分支网络相干斑抑制方法。构建了一种由边缘信息提取模块与双分支抑斑网络2部分构成的新型抑斑网络模型。采用密集级联方式构建边... 为进一步提升深度学习方法对合成孔径雷达(SAR)图像相干斑的抑制与边缘保持性能,提出了一种边缘引导的双分支网络相干斑抑制方法。构建了一种由边缘信息提取模块与双分支抑斑网络2部分构成的新型抑斑网络模型。采用密集级联方式构建边缘信息提取模块,增强模型的边缘感知能力;利用基于通道注意力的残差抑斑子网络(CARNet)、基于混合注意力的增强抑斑子网络(MAENet)及基于多分支并行的多尺度特征融合模块(MPMFFB)共同形成双分支抑斑网络,实现在相干斑抑制的同时更好地保护边缘细节。实验结果表明:与SAR-Transformer、HTNet等先进方法相比,所提方法具有更好的相干斑抑制与边缘保持性能;对仿真SAR图像,峰值信噪比、结构相似性、边缘保持指数分别平均提升0.96 dB、2.60%、0.60%;对真实SAR图像,等效视数提升14.12%以上,边缘保持指数平均提升4.52%。 展开更多
关键词 图像去噪 合成孔径雷达图像 相干斑抑制 双分支网络 多尺度特征融合
原文传递
基于改进的鲁棒非凸范数的视频运动目标检测
15
作者 王莉 窦东阳 +1 位作者 李维勇 高丽娜 《云南大学学报(自然科学版)》 北大核心 2025年第6期1059-1067,共9页
针对传统的低秩稀疏分解模型由于替代函数逼近程度不高和抗噪声能力弱等关键挑战引发的视频运动目标检测性能不高的问题,提出了一种基于改进的鲁棒非凸范数的视频运动目标检测模型.该模型首先采用非凸的拉普拉斯指数范数替代传统LRSD方... 针对传统的低秩稀疏分解模型由于替代函数逼近程度不高和抗噪声能力弱等关键挑战引发的视频运动目标检测性能不高的问题,提出了一种基于改进的鲁棒非凸范数的视频运动目标检测模型.该模型首先采用非凸的拉普拉斯指数范数替代传统LRSD方法中的低秩项;然后,采用非凸的Geman分数范数替代传统LRSD方法中的系数项;其次,将噪声项引入到IRNCN模型中以增强其抗噪声的鲁棒性;接着,为有效求解改进的鲁棒非凸范数的视频运动目标检测模型,采用交替方向乘子法对提出的模型进行有效求解;最后,将提出的模型应用于经典的CDnet数据集和I2R数据集的视频运动目标检测实验中.实验结果表明,新模型的平均F1值比其他同类对比模型最大可提高0.2013,对应的平均精准率最大可提高12.24%,对应的每帧运行时间最大可提高0.1297 s,从而验证了所提出模型的有效性和优越性. 展开更多
关键词 运动目标检测 低秩稀疏分解 指数范数 分数范数 交替方向乘子法
在线阅读 下载PDF
多粒度文本感知分层特征交互的视觉定位方法
16
作者 才华 冉越 +3 位作者 付强 李军龑 张晨洁 孙俊喜 《电子与信息学报》 北大核心 2025年第11期4594-4605,共12页
现有视觉定位方法在文本引导目标定位和特征融合方面存在显著不足,主要表现为未能充分利用文本信息,并且整体性能过于依赖特征提取后的融合过程。针对这一问题,该文提出一种多粒度文本感知分层特征交互的视觉定位方法。该方法在图像分... 现有视觉定位方法在文本引导目标定位和特征融合方面存在显著不足,主要表现为未能充分利用文本信息,并且整体性能过于依赖特征提取后的融合过程。针对这一问题,该文提出一种多粒度文本感知分层特征交互的视觉定位方法。该方法在图像分支中引入分层特征交互模块,利用文本信息增强与文本相关的图像特征;多粒度文本感知模块深入挖掘文本语义内容,生成具有空间和语义增强的加权文本。在此基础上,采用基于哈达玛积的初步融合策略融合加权文本和图像,为跨模态特征融合提供更为精细的图像表示。利用Transformer编码器进行跨模态特征融合,通过多层感知机回归定位坐标。实验结果表明,该文方法在5个经典视觉定位数据集上均取得了显著的精度提升,成功解决了传统方法过度依赖特征融合模块而导致的性能瓶颈问题。 展开更多
关键词 视觉定位 多粒度 文本感知 分层特征交互 自适应文本加权 哈达玛积
在线阅读 下载PDF
一种双分支特征交互融合的高效红外图像彩色化方法
17
作者 陈宇 詹伟达 +2 位作者 蒋一纯 朱德鹏 韩登 《西安交通大学学报》 北大核心 2025年第8期211-222,共12页
针对现有的红外图像彩色化方法在全局特征捕获和计算复杂度方面存在显著局限性的问题,提出了一种双分支特征交互融合的高效红外图像彩色化方法。设计双分支编码器,通过局部特征提取分支获取局部空间上下文信息,确保细粒度特征的捕获,并... 针对现有的红外图像彩色化方法在全局特征捕获和计算复杂度方面存在显著局限性的问题,提出了一种双分支特征交互融合的高效红外图像彩色化方法。设计双分支编码器,通过局部特征提取分支获取局部空间上下文信息,确保细粒度特征的捕获,并通过全局特征提取分支获取全局特征,满足对长程依赖的需求。设计交互融合模块,对两个分支提取到的特征进行有效整合,显著增强了模型的整体性能。在解码器部分提出上下文聚合模块,进一步优化多尺度语义特征的聚合能力,改善了彩色化结果的边缘清晰度和细节表现力。在KAIST和FLIR数据集上进行广泛实验验证,结果表明:与现有方法相比,所提方法在两个数据集上均具有更高的彩色化质量,峰值信噪比分别达到28.645、30.459 dB,结构相似度达到0.507、0.725,均优于对比方法,且有效性和先进性也得到了验证。研究结果可为提升红外图像的可读性与可解释性以及提高夜视与恶劣环境下的观测能力提供参考。 展开更多
关键词 红外图像彩色化 细粒度特征 长程依赖 交互融合 上下文聚合
在线阅读 下载PDF
YOLOv8n-CSG:轻量化钢材表面缺陷检测算法
18
作者 赵佰亭 张敏 贾晓芬 《电子测量与仪器学报》 北大核心 2025年第8期115-125,共11页
为解决钢材表面缺陷检测中因缺陷类型繁多、尺寸差异显著造成检测精度低,以及现有模型复杂度高等问题,提出了一种改进YOLOv8n的轻量化检测算法YOLOv8n-CSG。首先,引入上下文引导模块(context guided block,CG block)设计C2f_CG模块增强... 为解决钢材表面缺陷检测中因缺陷类型繁多、尺寸差异显著造成检测精度低,以及现有模型复杂度高等问题,提出了一种改进YOLOv8n的轻量化检测算法YOLOv8n-CSG。首先,引入上下文引导模块(context guided block,CG block)设计C2f_CG模块增强对周围特征的捕捉能力,增强信息关联性;其次,加入星型网络模块(Star Block)设计出C2f_Star模块,将输入数据映射到高维的非线性特征空间,生成丰富的特征表示,使得模型在处理细微缺陷时更加有效;最后,设计了集成分组混洗卷积(grouped and shuffled convolution,GSConv)和高效多尺度注意力机制(efficient multi-Scale attention,EMA)的轻量化检测头GSE_Detect,保持了原检测头的高效的同时降低复杂度。在NEU-DET数据集上进行多组实验,结果表明,改进后的YOLOv8n-CSG网络模型平均精度均值(mAP)mAP@0.5达到了76.8%,相较于YOLOv8n,mAP@0.5提升了6.9%、精度提升了11.3%、计算量降低了37%、参数量降低了35.2%,展现出对钢材表面缺陷更佳的检测能力,且平衡了模型的性能和复杂度。 展开更多
关键词 缺陷检测 轻量化YOLOv8n C2f_CG C2f_Star GSE_Detect
原文传递
基于激光视觉传感的复杂运动场景多目标人体姿态辨识研究
19
作者 张润红 刘尚武 刘毅娟 《激光杂志》 北大核心 2025年第10期243-248,共6页
在复杂运动场景中,背景纹理、颜色等信息与人体目标相似,难以确定人体姿态的空间域特征与时序动态特征,导致复杂运动场景多目标人体姿态辨识精度不高,为此提出了基于激光视觉传感的复杂运动场景多目标人体姿态辨识方法。采用激光视觉传... 在复杂运动场景中,背景纹理、颜色等信息与人体目标相似,难以确定人体姿态的空间域特征与时序动态特征,导致复杂运动场景多目标人体姿态辨识精度不高,为此提出了基于激光视觉传感的复杂运动场景多目标人体姿态辨识方法。采用激光视觉传感技术与坐标转换采集目标人体图像,通过混合高斯模型消除采集到的图像中的阴影区域并确定目标人体区域。根据目标人体区域提取人体姿态的空间域特征与时序动态特征,结合人体姿态特征与支持向量机实现复杂运动场景多目标人体姿态辨识。实验结果表明,所提方法具有较高的复杂运动场景目标提取精度与姿态辨识精度,可以在实际中得到广泛应用。 展开更多
关键词 激光视觉传感 混合高斯模型 阴影消除 姿态辨识 支持向量机
原文传递
基于模板对齐与多阶段特征学习的光场角度重建
20
作者 郁梅 周涛 +3 位作者 陈晔曜 蒋志迪 骆挺 蒋刚毅 《电子与信息学报》 北大核心 2025年第2期530-540,共11页
现有光场图像角度重建方法通过探索光场图像内在的空间-角度信息以进行角度重建,但无法同时处理不同视点层的子孔径图像重建任务,难以满足光场图像可伸缩编码的需求。为此,将视点层视为稀疏模板,该文提出一种能够单模型处理不同角度稀... 现有光场图像角度重建方法通过探索光场图像内在的空间-角度信息以进行角度重建,但无法同时处理不同视点层的子孔径图像重建任务,难以满足光场图像可伸缩编码的需求。为此,将视点层视为稀疏模板,该文提出一种能够单模型处理不同角度稀疏模板的光场图像角度重建方法。将不同的角度稀疏模板视为微透镜阵列图像的不同表示,通过模板对齐将输入的不同视点层整合为微透镜阵列图像,采用多阶段特征学习方式,以微透镜阵列级-子孔径级的特征学习策略来处理不同输入的稀疏模板,并辅以独特的训练模式,以稳定地参考不同角度稀疏模板,重建任意角度位置的子孔径图像。实验结果表明,所提方法能有效地参考不同稀疏模板,灵活地重建任意角度位置的子孔径图像,且所提模板对齐与训练方法能有效地应用于其它光场图像超分辨率重建方法以提升其处理不同角度稀疏模板的能力。 展开更多
关键词 光场图像 角度重建 可伸缩编码 稀疏模板
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部