本文提出了一种基于CORDIC (Coordinate Rotation Digital Computer)算法的数字鉴频方法。首先给出了基于CORDIC算法的鉴相原理,讨论了CORDIC算法的鉴相范围;然后讨论了差分鉴频的方法,特别是对低数据率情况下的差分鉴频进行了探讨,并...本文提出了一种基于CORDIC (Coordinate Rotation Digital Computer)算法的数字鉴频方法。首先给出了基于CORDIC算法的鉴相原理,讨论了CORDIC算法的鉴相范围;然后讨论了差分鉴频的方法,特别是对低数据率情况下的差分鉴频进行了探讨,并给出了一种实用的数字鉴频结构。计算机仿真结果和FPGA仿真结果表明,基于CORDIC算法流水结构和一阶差分结构实现的数字鉴频方法是可行的,而且是高效的。展开更多
A fast-locking, low-jitter, phase-locked loop (PLL) with a simple phase-frequency detector is proposed. The phase-frequency detector is composed of only two XOR gates. It simultaneously achieves low jitter and short...A fast-locking, low-jitter, phase-locked loop (PLL) with a simple phase-frequency detector is proposed. The phase-frequency detector is composed of only two XOR gates. It simultaneously achieves low jitter and short locking time. The voltage-controlled oscillator within the PLL consists of four-stage ring oscillators which are coupled to each other and oscillate with the same frequency and a phase shift of 45. The PLL is fabricated in 0. 1Stem CMOS technology. The measured phase noise of the PLL output at 500kHz offset from the 5GHz center frequency is - 102.6dBc/Hz. The circuit exhibits a capture range of 280MHz and a low RMS jitter of 2.06ps. The power dissipation excluding the output buffers is only 21.6roW at a 1.8V supply.展开更多
文摘本文提出了一种基于CORDIC (Coordinate Rotation Digital Computer)算法的数字鉴频方法。首先给出了基于CORDIC算法的鉴相原理,讨论了CORDIC算法的鉴相范围;然后讨论了差分鉴频的方法,特别是对低数据率情况下的差分鉴频进行了探讨,并给出了一种实用的数字鉴频结构。计算机仿真结果和FPGA仿真结果表明,基于CORDIC算法流水结构和一阶差分结构实现的数字鉴频方法是可行的,而且是高效的。
文摘A fast-locking, low-jitter, phase-locked loop (PLL) with a simple phase-frequency detector is proposed. The phase-frequency detector is composed of only two XOR gates. It simultaneously achieves low jitter and short locking time. The voltage-controlled oscillator within the PLL consists of four-stage ring oscillators which are coupled to each other and oscillate with the same frequency and a phase shift of 45. The PLL is fabricated in 0. 1Stem CMOS technology. The measured phase noise of the PLL output at 500kHz offset from the 5GHz center frequency is - 102.6dBc/Hz. The circuit exhibits a capture range of 280MHz and a low RMS jitter of 2.06ps. The power dissipation excluding the output buffers is only 21.6roW at a 1.8V supply.