The noise characteristics of dual-pumped fiber optical parametric amplifiers(FOPAs) induced by gain and loss in photonic crystal fibers(PCFs) are analyzed.A special photonic crystal fiber is designed.Its noise figure(...The noise characteristics of dual-pumped fiber optical parametric amplifiers(FOPAs) induced by gain and loss in photonic crystal fibers(PCFs) are analyzed.A special photonic crystal fiber is designed.Its noise figure(NF) changes with structure parameters,and it decreases as the hole diameter decreases.Three factors including input-signal power,signal wavelength and pump separation which impact on the final noise figure are discussed with the designed PCF.展开更多
This paper theoretically studies the double-pumped fibre-optical parametric amplifiers (FOPAs) in photonic crystal fibres. Two distinct working regimes of FOPAs are researched, which depend on the dispersion at the ...This paper theoretically studies the double-pumped fibre-optical parametric amplifiers (FOPAs) in photonic crystal fibres. Two distinct working regimes of FOPAs are researched, which depend on the dispersion at the central wavelength of the two pumps. Extremely broad tuning range can be obtained when the central pump wavelength is in the normal dispersion regime and is insensitive to the wavelength separation between the two pumps, while the tuning range is narrow in the anomalous dispersion regime and can be significantly enhanced by increasing the wavelength separation. Impacts of higher-order dispersions and temporal walk-off on the gain spectra are also discussed.展开更多
In theory, we study the quantum tluctuatlons ot tlae suDllarmonlc renecteu nela Irom a ulplc-rc^ulltUtt IdU^ClIClatC optical parametric amplifier (OPA) inside an optical cavity. We discuss two cases, where the linew...In theory, we study the quantum tluctuatlons ot tlae suDllarmonlc renecteu nela Irom a ulplc-rc^ulltUtt IdU^ClIClatC optical parametric amplifier (OPA) inside an optical cavity. We discuss two cases, where the linewidth of the harmonic field is either much narrower or broader than the subharmonic field. Since an electromagnetically-induced-transparency (EIT)-like effect can be simulated in a triple-resonant OPA, the output spectra from a triple-resonant OPA with a squeezed vacuum input may simulate the phenomenon of the response of an EIT medium for squeezed states. This scheme can be implemented with present experimental setups.展开更多
We investigate the pump-depleted model of a dual-pump fiber optical parametric amplifier(FOPA) with Raman effect.As bandwidth increases,the gain profile of the distorted FOPA would be impacted seriously.Under the wide...We investigate the pump-depleted model of a dual-pump fiber optical parametric amplifier(FOPA) with Raman effect.As bandwidth increases,the gain profile of the distorted FOPA would be impacted seriously.Under the widebands,especially when the pump separation is large,zero dispersion wavelength(ZDW) fluctuation is another factor which can not be neglected.Numerical simulations with these comprehensive factors are mainly analyzed to obtain their influence on gain characteristics.Saturated gain spectrum is also discussed in detail.展开更多
We investigate the spectra of the gain and pump-to-signal relative intensity noise (RIN) transfer in silicon optical parametric amplifier (SOPA) with Raman effect, and draw a conclusion that Raman effect makes the spe...We investigate the spectra of the gain and pump-to-signal relative intensity noise (RIN) transfer in silicon optical parametric amplifier (SOPA) with Raman effect, and draw a conclusion that Raman effect makes the spectra narrower from 260 nm to 180 nm. A maximum gain also appears at 1622 nm. Moreover, the effects of the related parameters in SOPA on the gain and the pump-to-signal RIN transfer characteristics are also discussed. The high gain (16 dB) and low pump-to-signal RIN transfer (7 dB) can be obtained by using the appropriate parameters of pump and silicon waveguide.展开更多
An impedance matched parametric amplifier(IMPA)with Josephson junctions is fabricated and characterized.A hybrid structure containing coplanar and strip structures is implemented to realize an impedance taper line and...An impedance matched parametric amplifier(IMPA)with Josephson junctions is fabricated and characterized.A hybrid structure containing coplanar and strip structures is implemented to realize an impedance taper line and a plate capacitor in an LC nonlinear resonator based on Josephson junctions.The upper plate of the capacitor is isolated with SiNx without grounding as well as the strips.Such easily-prepared designs greatly reduce the requirements for lithography alignment and precision,which makes the fabrication process more reliable.The experimental results show that in such IMPA a gain higher than 25 dB with a bandwidth of about 100 MHz can be obtained.This broadband amplifier operates close to the quantum limit.By adjusting the working point,a higher bandwidth of about 400 MHz can be obtained with a gain of about 17 dB.展开更多
We demonstrate the output characteristic of broadband parametric amplification of incoherent light pulses in a 355-nm pumped degenerate picosecond optical parametric amplification with either saturated or unsaturated ...We demonstrate the output characteristic of broadband parametric amplification of incoherent light pulses in a 355-nm pumped degenerate picosecond optical parametric amplification with either saturated or unsaturated amplification. The optical parametric amplifier is seeded by the fluorescence generated in a solution of pyridine-1 dye in ethanol. With the saturated amplification, we can obtain high energy incoherent light pulses, whose full width at half maximum bandwidth varies from 16 nm to 53 nm for the different phase matching angles near degeneracy. Moreover, the unsaturated bandwidth of the amplified pulses fits well to the calculated result at degeneracy. Selecting s-polarized fluorescence with a Glan-Taylor prism, the maximum bandwidth of the amplified fluorescence is found to be 59 nm for a purely s-polarized seed. The maximum output energy is 0.67 mJ for the optical parametric amplifier. By using an optical filter and compressor, the generated high energy incoherent light has great potential as the incoherent pump, signal or idler wave of a parametric down-conversion process, so that a wave with a high degree of coherence can be generated from an incoherent pump light.展开更多
Chirped mirrors (CMs) are designed and manufactured. The optimized CM provides a group delay dispersion (ODD) of around -60fs^2 and average reflectivity of 99.4% with bandwidth 200 nm at a central wavelength of 8...Chirped mirrors (CMs) are designed and manufactured. The optimized CM provides a group delay dispersion (ODD) of around -60fs^2 and average reflectivity of 99.4% with bandwidth 200 nm at a central wavelength of 800nm. The CM structure consists of 52 layers of alternating high refractive index Ta2O5 and low refractive index SiO2. Measurement results show that the control of CM manufacturing accuracy can meet our requirement through time control with ion beam sputtering. Because the ODD of CMs is highly sensitive to small discrepancies between the layer thickness of calculated design and those of the manufactured mirror, we analyze the error sources which result in thickness errors and refractive index inhomogeneities in film manufacture.展开更多
We report on the generation of a squeezing vacuum at 1.55 μm using an optical parametric amplifier based on periodically poled LiNbO 3.Using three specifically designed narrow linewidth mode cleaners as the spatial m...We report on the generation of a squeezing vacuum at 1.55 μm using an optical parametric amplifier based on periodically poled LiNbO 3.Using three specifically designed narrow linewidth mode cleaners as the spatial mode and noise filter of the laser at 1.55 μm and 775 nm,the squeezed vacuum of up to 3.0 dB below the shot noise level at 1.55 μm is experimentally obtained.This system is compatible with standard telecommunication optical fibers,and will be useful for continuous variable long-distance quantum communication and distributed quantum computing.展开更多
Josephson parameter amplifier(JPA)is a microwave signal amplifier device with near-quantum-limit-noise performance.It has important applications in scientific research fields such as quantum computing and dark matter ...Josephson parameter amplifier(JPA)is a microwave signal amplifier device with near-quantum-limit-noise performance.It has important applications in scientific research fields such as quantum computing and dark matter detection.This work reports the fabrication and characterization of broadband JPA devices and their applications in multi-qubit readout and squeezing of vacuum state.We use a process in which transmission lines and electrodes are made of niobium thin film and aluminum Josephson junctions are made by Dolan bridge technique.We believe this process is more convenient than the process we used previously.The whole production process adopts electron beam lithography technology to ensure high structural resolution.The test result shows that the gain value of the manufactured JPA can exceed 15 dB,and the amplification bandwidth is about 400 MHz.The noise temperature is about 400 mK at the working frequency of 6.2 GHz.The devices have been successfully used in experiments involving superconducting multi-qubit quantum processors.Furthermore,the device is applied to squeeze vacuum fluctuations and a squeezing level of 1.635 dB is achieved.展开更多
Josephson parametric amplifiers (JPAs) with nearly quantum-limited noise performance have become indispensable devices for the measurements of superconducting quantum information. We have developed an all-Nb lumped-el...Josephson parametric amplifiers (JPAs) with nearly quantum-limited noise performance have become indispensable devices for the measurements of superconducting quantum information. We have developed an all-Nb lumped-element flux-driven JPA operating in the three-wave mixing mode. Our Nb-based JPA comprises Nb/Al-AlOx/Nb Josephson junctions, a parallel-plate capacitor with SiO2 dielectric sandwiched between two Nb layers, a bottom coplanar waveguides layer, and a top Nb wiring layer. We experimentally demonstrate a 20 dB gain over a 190 MHz bandwidth, a mean 1 dB compression of -123 dBm, and near quantum-limited noise performance. This fabrication process can be further used to design impedance transformed parametric amplifiers for multiple-qubit readout.展开更多
基金supported by the Major State Basic Research Development Program of China (No. 2010CB328304)the National Natural Science Foundation of China (Nos. 60807022 and 60677003)the Key Project of Chinese Ministry of Education (No.109015)
文摘The noise characteristics of dual-pumped fiber optical parametric amplifiers(FOPAs) induced by gain and loss in photonic crystal fibers(PCFs) are analyzed.A special photonic crystal fiber is designed.Its noise figure(NF) changes with structure parameters,and it decreases as the hole diameter decreases.Three factors including input-signal power,signal wavelength and pump separation which impact on the final noise figure are discussed with the designed PCF.
基金Project partially supported by the Shanghai Committee of Science and Technology, China (Grant Nos 05 SG 02 and 05 JC 14005)the National Natural Science Foundation of China (Grant Nos 60538010 and 10376009)
文摘This paper theoretically studies the double-pumped fibre-optical parametric amplifiers (FOPAs) in photonic crystal fibres. Two distinct working regimes of FOPAs are researched, which depend on the dispersion at the central wavelength of the two pumps. Extremely broad tuning range can be obtained when the central pump wavelength is in the normal dispersion regime and is insensitive to the wavelength separation between the two pumps, while the tuning range is narrow in the anomalous dispersion regime and can be significantly enhanced by increasing the wavelength separation. Impacts of higher-order dispersions and temporal walk-off on the gain spectra are also discussed.
基金supported by the National Basic Research Program of China (Grant No. 2011CB921601)the National Natural Science Foundation of China for Excellent Research Team (Grant No. 61121064)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20111401130001)the Graduate Outstanding Innovation Item of Shanxi Province, China (Grant No. 20113001)
文摘In theory, we study the quantum tluctuatlons ot tlae suDllarmonlc renecteu nela Irom a ulplc-rc^ulltUtt IdU^ClIClatC optical parametric amplifier (OPA) inside an optical cavity. We discuss two cases, where the linewidth of the harmonic field is either much narrower or broader than the subharmonic field. Since an electromagnetically-induced-transparency (EIT)-like effect can be simulated in a triple-resonant OPA, the output spectra from a triple-resonant OPA with a squeezed vacuum input may simulate the phenomenon of the response of an EIT medium for squeezed states. This scheme can be implemented with present experimental setups.
基金supported by the National Key Basic Research Special Foundation of China (No.2010CB328304)the National Natural Science Foundation of China (No.60807022)+1 种基金the Key Grant of Chinese Ministry of Education (No.109015)the Discipline Co-construction Project of Beijing Municipal Commission of Education (No.YB20081001301)
文摘We investigate the pump-depleted model of a dual-pump fiber optical parametric amplifier(FOPA) with Raman effect.As bandwidth increases,the gain profile of the distorted FOPA would be impacted seriously.Under the widebands,especially when the pump separation is large,zero dispersion wavelength(ZDW) fluctuation is another factor which can not be neglected.Numerical simulations with these comprehensive factors are mainly analyzed to obtain their influence on gain characteristics.Saturated gain spectrum is also discussed in detail.
基金supported by the National Basic Research Program of China (No.2010CB328304)
文摘We investigate the spectra of the gain and pump-to-signal relative intensity noise (RIN) transfer in silicon optical parametric amplifier (SOPA) with Raman effect, and draw a conclusion that Raman effect makes the spectra narrower from 260 nm to 180 nm. A maximum gain also appears at 1622 nm. Moreover, the effects of the related parameters in SOPA on the gain and the pump-to-signal RIN transfer characteristics are also discussed. The high gain (16 dB) and low pump-to-signal RIN transfer (7 dB) can be obtained by using the appropriate parameters of pump and silicon waveguide.
基金Project partially supported by the National Key R&D Program of of China(Grant No.2016YFA0301801)the National Natural Science Foundation of China(Grant Nos.61521001 and 61571219)PAPD,Dengfeng Project B of Nanjing University.
文摘An impedance matched parametric amplifier(IMPA)with Josephson junctions is fabricated and characterized.A hybrid structure containing coplanar and strip structures is implemented to realize an impedance taper line and a plate capacitor in an LC nonlinear resonator based on Josephson junctions.The upper plate of the capacitor is isolated with SiNx without grounding as well as the strips.Such easily-prepared designs greatly reduce the requirements for lithography alignment and precision,which makes the fabrication process more reliable.The experimental results show that in such IMPA a gain higher than 25 dB with a bandwidth of about 100 MHz can be obtained.This broadband amplifier operates close to the quantum limit.By adjusting the working point,a higher bandwidth of about 400 MHz can be obtained with a gain of about 17 dB.
基金Project supported by the National Basic Research Program of China (Grant No. 2007CB613205)the National Natural Science Foundation of China (Grant No. 61078005)
文摘We demonstrate the output characteristic of broadband parametric amplification of incoherent light pulses in a 355-nm pumped degenerate picosecond optical parametric amplification with either saturated or unsaturated amplification. The optical parametric amplifier is seeded by the fluorescence generated in a solution of pyridine-1 dye in ethanol. With the saturated amplification, we can obtain high energy incoherent light pulses, whose full width at half maximum bandwidth varies from 16 nm to 53 nm for the different phase matching angles near degeneracy. Moreover, the unsaturated bandwidth of the amplified pulses fits well to the calculated result at degeneracy. Selecting s-polarized fluorescence with a Glan-Taylor prism, the maximum bandwidth of the amplified fluorescence is found to be 59 nm for a purely s-polarized seed. The maximum output energy is 0.67 mJ for the optical parametric amplifier. By using an optical filter and compressor, the generated high energy incoherent light has great potential as the incoherent pump, signal or idler wave of a parametric down-conversion process, so that a wave with a high degree of coherence can be generated from an incoherent pump light.
文摘Chirped mirrors (CMs) are designed and manufactured. The optimized CM provides a group delay dispersion (ODD) of around -60fs^2 and average reflectivity of 99.4% with bandwidth 200 nm at a central wavelength of 800nm. The CM structure consists of 52 layers of alternating high refractive index Ta2O5 and low refractive index SiO2. Measurement results show that the control of CM manufacturing accuracy can meet our requirement through time control with ion beam sputtering. Because the ODD of CMs is highly sensitive to small discrepancies between the layer thickness of calculated design and those of the manufactured mirror, we analyze the error sources which result in thickness errors and refractive index inhomogeneities in film manufacture.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60878003)the Science Foundation for Excellent Research Team of the National Natural Science Foundation of China (Grant No. 61121064)the National Basic Research Program of China (Grant No. 2010CB923101)
文摘We report on the generation of a squeezing vacuum at 1.55 μm using an optical parametric amplifier based on periodically poled LiNbO 3.Using three specifically designed narrow linewidth mode cleaners as the spatial mode and noise filter of the laser at 1.55 μm and 775 nm,the squeezed vacuum of up to 3.0 dB below the shot noise level at 1.55 μm is experimentally obtained.This system is compatible with standard telecommunication optical fibers,and will be useful for continuous variable long-distance quantum communication and distributed quantum computing.
基金Project supported by the State Key Development Program for Basic Research of China(Grant No.2017YFA0304300)the Key-Area Research and Development Program of Guangdong Province,China(Grant No.2020B0303030001)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB28000000)。
文摘Josephson parameter amplifier(JPA)is a microwave signal amplifier device with near-quantum-limit-noise performance.It has important applications in scientific research fields such as quantum computing and dark matter detection.This work reports the fabrication and characterization of broadband JPA devices and their applications in multi-qubit readout and squeezing of vacuum state.We use a process in which transmission lines and electrodes are made of niobium thin film and aluminum Josephson junctions are made by Dolan bridge technique.We believe this process is more convenient than the process we used previously.The whole production process adopts electron beam lithography technology to ensure high structural resolution.The test result shows that the gain value of the manufactured JPA can exceed 15 dB,and the amplification bandwidth is about 400 MHz.The noise temperature is about 400 mK at the working frequency of 6.2 GHz.The devices have been successfully used in experiments involving superconducting multi-qubit quantum processors.Furthermore,the device is applied to squeeze vacuum fluctuations and a squeezing level of 1.635 dB is achieved.
基金Project supported by the National Natural Science Foundation of China(Grant No.92065116)Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA18000000)the Key-Area Research and Development Program of Guangdong Province,China(Grant No.2020B0303030002).
文摘Josephson parametric amplifiers (JPAs) with nearly quantum-limited noise performance have become indispensable devices for the measurements of superconducting quantum information. We have developed an all-Nb lumped-element flux-driven JPA operating in the three-wave mixing mode. Our Nb-based JPA comprises Nb/Al-AlOx/Nb Josephson junctions, a parallel-plate capacitor with SiO2 dielectric sandwiched between two Nb layers, a bottom coplanar waveguides layer, and a top Nb wiring layer. We experimentally demonstrate a 20 dB gain over a 190 MHz bandwidth, a mean 1 dB compression of -123 dBm, and near quantum-limited noise performance. This fabrication process can be further used to design impedance transformed parametric amplifiers for multiple-qubit readout.