Multi-organ-on-a-chip(MOOC)technology represents a pivotal direction in the organ-on-a-chip field,seeking to emulate the complex interactions of multiple human organs in vitro through microfluidic systems.This technol...Multi-organ-on-a-chip(MOOC)technology represents a pivotal direction in the organ-on-a-chip field,seeking to emulate the complex interactions of multiple human organs in vitro through microfluidic systems.This technology overcomes the limitations of traditional single-organ models,providing a novel platform for investigating complex disease mechanisms and evaluating drug efficacy and toxicity.Although it demonstrates broad application prospects,its development still faces critical bottlenecks,including inadequate physiological coupling between organs,short functional maintenance durations,and limited real-time monitoring capabilities.Contemporary research is advancing along three key directions,including functional coupling,sensor integration,and full-process automation systems,to propel the technology toward enhanced levels of physiological relevance and predictive accuracy.展开更多
为解决碳化硅金属氧化物半导体场效应晶体管(SiC Metal Oxide Semiconductor Field Effect Transistor,SiC MOSFET)硬开关故障(Hard Switch Fault,HSF)、负载故障(Fault Under Load,FUL)和过载故障(OverLoad fault,OL)的问题,本文提出...为解决碳化硅金属氧化物半导体场效应晶体管(SiC Metal Oxide Semiconductor Field Effect Transistor,SiC MOSFET)硬开关故障(Hard Switch Fault,HSF)、负载故障(Fault Under Load,FUL)和过载故障(OverLoad fault,OL)的问题,本文提出了一种基于SiC MOSFET漏极电压和源极电压检测的过流保护方法(OverCurrent Protection method based on the Drain-voltage and Source-voltage Detection,DSD-OCP).该方法通过检测电路实时监控SiC MOSFET的漏极电压和源极电压来准确识别短路故障和过载故障,并利用驱动电路控制SiC MOSFET的开通和关断,从而实现快速短路保护和自适应过载保护,同时还集成软关断功能.基于0.5μm双极型-互补金属氧化物半导体-双扩散金属氧化物半导体(Bipolar-CMOS-DMOS,BCD)工艺,设计了DSD-OCP电路并进行流片,芯片面积为2.8 mm^(2).采用研制的芯片搭建1200 V/80 mΩSiC MOSFET测试平台,并验证了DSD-OCP方法的有效性.实验结果表明,SiC MOSFET在DSD-OCP芯片保护下的HSF和FUL持续时间分别为88 ns和105 ns.在不同母线电压下,DSD-OCP芯片能够为SiC MOSFET提供自适应的过载保护.因DSD-OCP芯片具有软关断功能,SiC MOSFET在过流保护时的漏极电压过冲不超过110 V.展开更多
针对现场可编程门阵列(Field Programmable Gate Array,FPGA)电声测试数据采集电路的优化策略进行深入研究。在电声测试领域,数据采集精准性与效率极其关键,而FPGA凭借高性能属性得到广泛应用。在电声测试数据收集阶段,FPGA在采样率和...针对现场可编程门阵列(Field Programmable Gate Array,FPGA)电声测试数据采集电路的优化策略进行深入研究。在电声测试领域,数据采集精准性与效率极其关键,而FPGA凭借高性能属性得到广泛应用。在电声测试数据收集阶段,FPGA在采样率和多通道同步等方面面临难题。为化解这些困扰,制定一系列优化办法,包括高速模数转换器(Analog to Digital Converter,ADC)接口设计事项及多通道并行的架构体系,以增强电路性能,为电声测试给予更可靠且高效的数据收集支撑。展开更多
基金supported by the Shenzhen Medical Research Fund(Grant No.A2303049)Guangdong Basic and Applied Basic Research(Grant No.2023A1515010647)+1 种基金National Natural Science Foundation of China(Grant No.22004135)Shenzhen Science and Technology Program(Grant No.RCBS20210706092409020,GXWD20201231165807008,20200824162253002).
文摘Multi-organ-on-a-chip(MOOC)technology represents a pivotal direction in the organ-on-a-chip field,seeking to emulate the complex interactions of multiple human organs in vitro through microfluidic systems.This technology overcomes the limitations of traditional single-organ models,providing a novel platform for investigating complex disease mechanisms and evaluating drug efficacy and toxicity.Although it demonstrates broad application prospects,its development still faces critical bottlenecks,including inadequate physiological coupling between organs,short functional maintenance durations,and limited real-time monitoring capabilities.Contemporary research is advancing along three key directions,including functional coupling,sensor integration,and full-process automation systems,to propel the technology toward enhanced levels of physiological relevance and predictive accuracy.
文摘为解决碳化硅金属氧化物半导体场效应晶体管(SiC Metal Oxide Semiconductor Field Effect Transistor,SiC MOSFET)硬开关故障(Hard Switch Fault,HSF)、负载故障(Fault Under Load,FUL)和过载故障(OverLoad fault,OL)的问题,本文提出了一种基于SiC MOSFET漏极电压和源极电压检测的过流保护方法(OverCurrent Protection method based on the Drain-voltage and Source-voltage Detection,DSD-OCP).该方法通过检测电路实时监控SiC MOSFET的漏极电压和源极电压来准确识别短路故障和过载故障,并利用驱动电路控制SiC MOSFET的开通和关断,从而实现快速短路保护和自适应过载保护,同时还集成软关断功能.基于0.5μm双极型-互补金属氧化物半导体-双扩散金属氧化物半导体(Bipolar-CMOS-DMOS,BCD)工艺,设计了DSD-OCP电路并进行流片,芯片面积为2.8 mm^(2).采用研制的芯片搭建1200 V/80 mΩSiC MOSFET测试平台,并验证了DSD-OCP方法的有效性.实验结果表明,SiC MOSFET在DSD-OCP芯片保护下的HSF和FUL持续时间分别为88 ns和105 ns.在不同母线电压下,DSD-OCP芯片能够为SiC MOSFET提供自适应的过载保护.因DSD-OCP芯片具有软关断功能,SiC MOSFET在过流保护时的漏极电压过冲不超过110 V.
文摘针对现场可编程门阵列(Field Programmable Gate Array,FPGA)电声测试数据采集电路的优化策略进行深入研究。在电声测试领域,数据采集精准性与效率极其关键,而FPGA凭借高性能属性得到广泛应用。在电声测试数据收集阶段,FPGA在采样率和多通道同步等方面面临难题。为化解这些困扰,制定一系列优化办法,包括高速模数转换器(Analog to Digital Converter,ADC)接口设计事项及多通道并行的架构体系,以增强电路性能,为电声测试给予更可靠且高效的数据收集支撑。