针对轻量级模型在光刻热点检测中特征提取能力不足的问题,提出以改进重排网络第2版(shuffle net version 2,ShuffleNetV2)为主干网络,引入多尺度双重注意力(multi-scale dual attention,MSDA)模块,同时融合梯度协调机制(gradient harmon...针对轻量级模型在光刻热点检测中特征提取能力不足的问题,提出以改进重排网络第2版(shuffle net version 2,ShuffleNetV2)为主干网络,引入多尺度双重注意力(multi-scale dual attention,MSDA)模块,同时融合梯度协调机制(gradient harmonizing mechanism,GHM)和基于度量学习思想的加性角度边距(additive angular margin,AAM)的光刻热点检测模型——ShuffleNetV2-MSDA-GHM-AAM(SMGA)。该模型提升了对不同尺度上下文信息的建模与感知能力,优化了特征嵌入空间的类间判别性,缓解了数据集的不平衡。在2012年国际计算机辅助设计会议(2012 international conference on computer-aided design,ICCAD 2012)数据集上进行实验,结果显示,SMGA模型在保持98.22%的较高检测召回率的同时,平均误报数量降低到484个。该模型为实现集成电路设计阶段的高效、低成本光刻热点检测提供了可行方案,具有重要的工程应用价值和推广前景。展开更多
文摘针对轻量级模型在光刻热点检测中特征提取能力不足的问题,提出以改进重排网络第2版(shuffle net version 2,ShuffleNetV2)为主干网络,引入多尺度双重注意力(multi-scale dual attention,MSDA)模块,同时融合梯度协调机制(gradient harmonizing mechanism,GHM)和基于度量学习思想的加性角度边距(additive angular margin,AAM)的光刻热点检测模型——ShuffleNetV2-MSDA-GHM-AAM(SMGA)。该模型提升了对不同尺度上下文信息的建模与感知能力,优化了特征嵌入空间的类间判别性,缓解了数据集的不平衡。在2012年国际计算机辅助设计会议(2012 international conference on computer-aided design,ICCAD 2012)数据集上进行实验,结果显示,SMGA模型在保持98.22%的较高检测召回率的同时,平均误报数量降低到484个。该模型为实现集成电路设计阶段的高效、低成本光刻热点检测提供了可行方案,具有重要的工程应用价值和推广前景。