The resolution characteristic of GaAs/GaAlAs transmission photocathode is an important parameter in third generation intensifiers. The modulation transfer function of GaAs/GaAlAs transmission photo...The resolution characteristic of GaAs/GaAlAs transmission photocathode is an important parameter in third generation intensifiers. The modulation transfer function of GaAs/GaAlAs transmission photocathode is derived from a simple two-dimensional diffusion equation. The theoretical resolution characteristic of a 2 μm thick GaAs/GaAlAs transmission photocathode is calculated. The relationship between resolution and parameters in GaAs/GaAlAs transmission photocathode is discussed. A conclusion is shown that one can design the GaAs/GaAlAs transmission photocathode for maximum quantum efficiency, since the sacrifice in the resolution doesn't limit system performances.展开更多
A GaAs/GaAlAs transmission photocathode surface topography is examined with a scanning electron microscope(SEM) in the secondary emission mode.The contributions of photocathode surface topography to mean transverse en...A GaAs/GaAlAs transmission photocathode surface topography is examined with a scanning electron microscope(SEM) in the secondary emission mode.The contributions of photocathode surface topography to mean transverse energy of electrons emitted from the photocathode are calculated. Measurement is made of the variation of mean transverse emission energy with activating time during the course of activation. It is shown that the scattering of the photoelectrons in the Cs/O layer is the primary cause of the unexpectant high values of the mean transverse energy of electrons emitted from GaAs/GaAlAs photocathode. A method is proposed for the reduction of the mean transverse energy of electrons emitted from the photocathode.展开更多
The resolution characteristic can be obtained by the modulation transfer function (MTF) of a GaAs/GaA1As photocathode. After establishing the theoretical model of GaAs(100)-oriented atomic configuration and the fo...The resolution characteristic can be obtained by the modulation transfer function (MTF) of a GaAs/GaA1As photocathode. After establishing the theoretical model of GaAs(100)-oriented atomic configuration and the formula for the ionized impurity scattering of the non-equilibrium carriers, this paper calculates the trajectories of photoelectrons in a photocathode. Thus the distribution of photoelectron spots on the emit-face is obtained, which is namely the point spread function. The MTF is obtained by Fourier transfer of the line spread function obtained from the point spread function. The MTF obtained from these calculations is shown to depend heavily on the electron diffusion length, and enhanced considerably by decreasing the electron diffusion length and increasing the doping concentration. Furthermore, the resolution is enhanced considerably by increasing the active-layer thickness, especially at high spatial frequencies. The best spatial resolution is 860 lp/mm, for the GaAs photocathode of doping concentration 1 ×10^19 cm 3 electron diffusion length 3.6 μm and the active-layer thickness 2 μm, under the 633-nm light irradiated. This research will contribute to the future improvement of the cathode's resolution for preparing a high performance GaAs photocathode, and improve the resolution of a low light level image intensifier.展开更多
A transmission-mode GaAs photocathode includes four layers of glass, Si3N4, Gal-xAlxAs and GaAs. A gradientdoping photocathode sample was obtained by molecular beam epitaxy and its transmittance was measured by spectr...A transmission-mode GaAs photocathode includes four layers of glass, Si3N4, Gal-xAlxAs and GaAs. A gradientdoping photocathode sample was obtained by molecular beam epitaxy and its transmittance was measured by spectrophotometer from 600 nm to 1100 nm. The theoretical transmittance is derived and simulated based on the matrix formula for thin film optics. The simulation results indicate the influence of the transition layers and the three thin-film layers except glass on the transmittance spectra. In addition, a fitting coefficient needed for error modification enters into the fitted formula. The fitting results show that the relative error in the full spectrum reduces from 19.51% to 4.35% after the formula is modified. The coefficient and the thicknesses are gained corresponding to the minimum relative error, meanwhile each layer and total thin-film thickness deviation in the module can be controlled within 73. The presence of glass layer roughness, layer interface effects and surface oxides is interpreted on the modification.展开更多
The stability of a reflection-mode GaAs photocathode has been investigated by monitoring the photocurrent and the spectral response at room temperature. We observe the photocurrent of the cathode decaying with time in...The stability of a reflection-mode GaAs photocathode has been investigated by monitoring the photocurrent and the spectral response at room temperature. We observe the photocurrent of the cathode decaying with time in the vacuum system under the action of Cs current, and find that the Cs atoms residing in the vacuum system are helpful in prolonging the life of the cathode. We examine the evolution and analyse the influence of the barrier on the spectral response of the cathode. Our results support the double dipolar mode] for the explanation of the negative electron affinity effect.展开更多
文摘The resolution characteristic of GaAs/GaAlAs transmission photocathode is an important parameter in third generation intensifiers. The modulation transfer function of GaAs/GaAlAs transmission photocathode is derived from a simple two-dimensional diffusion equation. The theoretical resolution characteristic of a 2 μm thick GaAs/GaAlAs transmission photocathode is calculated. The relationship between resolution and parameters in GaAs/GaAlAs transmission photocathode is discussed. A conclusion is shown that one can design the GaAs/GaAlAs transmission photocathode for maximum quantum efficiency, since the sacrifice in the resolution doesn't limit system performances.
文摘A GaAs/GaAlAs transmission photocathode surface topography is examined with a scanning electron microscope(SEM) in the secondary emission mode.The contributions of photocathode surface topography to mean transverse energy of electrons emitted from the photocathode are calculated. Measurement is made of the variation of mean transverse emission energy with activating time during the course of activation. It is shown that the scattering of the photoelectrons in the Cs/O layer is the primary cause of the unexpectant high values of the mean transverse energy of electrons emitted from GaAs/GaAlAs photocathode. A method is proposed for the reduction of the mean transverse energy of electrons emitted from the photocathode.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60678043)the Research and Innovation Plan for Graduate Students of Jiangsu Higher Education Institutions,China (Grant No. CX09B 096Z)
文摘The resolution characteristic can be obtained by the modulation transfer function (MTF) of a GaAs/GaA1As photocathode. After establishing the theoretical model of GaAs(100)-oriented atomic configuration and the formula for the ionized impurity scattering of the non-equilibrium carriers, this paper calculates the trajectories of photoelectrons in a photocathode. Thus the distribution of photoelectron spots on the emit-face is obtained, which is namely the point spread function. The MTF is obtained by Fourier transfer of the line spread function obtained from the point spread function. The MTF obtained from these calculations is shown to depend heavily on the electron diffusion length, and enhanced considerably by decreasing the electron diffusion length and increasing the doping concentration. Furthermore, the resolution is enhanced considerably by increasing the active-layer thickness, especially at high spatial frequencies. The best spatial resolution is 860 lp/mm, for the GaAs photocathode of doping concentration 1 ×10^19 cm 3 electron diffusion length 3.6 μm and the active-layer thickness 2 μm, under the 633-nm light irradiated. This research will contribute to the future improvement of the cathode's resolution for preparing a high performance GaAs photocathode, and improve the resolution of a low light level image intensifier.
基金supported by the National Natural Science Foundation of China (Grant No. 60678043)the Research and Innovation Plan for Graduate Students of Jiangsu Higher Education Institutions of China (Grant No. CX09B-096Z)
文摘A transmission-mode GaAs photocathode includes four layers of glass, Si3N4, Gal-xAlxAs and GaAs. A gradientdoping photocathode sample was obtained by molecular beam epitaxy and its transmittance was measured by spectrophotometer from 600 nm to 1100 nm. The theoretical transmittance is derived and simulated based on the matrix formula for thin film optics. The simulation results indicate the influence of the transition layers and the three thin-film layers except glass on the transmittance spectra. In addition, a fitting coefficient needed for error modification enters into the fitted formula. The fitting results show that the relative error in the full spectrum reduces from 19.51% to 4.35% after the formula is modified. The coefficient and the thicknesses are gained corresponding to the minimum relative error, meanwhile each layer and total thin-film thickness deviation in the module can be controlled within 73. The presence of glass layer roughness, layer interface effects and surface oxides is interpreted on the modification.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60678043,60871012,and 60801036)the Research Funding of Nanjing University of Science and Technology (Grant No. 2010ZYTS032)
文摘The stability of a reflection-mode GaAs photocathode has been investigated by monitoring the photocurrent and the spectral response at room temperature. We observe the photocurrent of the cathode decaying with time in the vacuum system under the action of Cs current, and find that the Cs atoms residing in the vacuum system are helpful in prolonging the life of the cathode. We examine the evolution and analyse the influence of the barrier on the spectral response of the cathode. Our results support the double dipolar mode] for the explanation of the negative electron affinity effect.