金属氧化物薄膜晶体管(Metal oxide thin film transistors,MOTFTs)因其具有较高的载流子迁移率和较好的电学稳定性,在大尺寸发光显示驱动背板应用方面极具潜力。此外,MOTFTs与非晶硅薄膜晶体管的制备工艺兼容,制造成本较低,具有较大市...金属氧化物薄膜晶体管(Metal oxide thin film transistors,MOTFTs)因其具有较高的载流子迁移率和较好的电学稳定性,在大尺寸发光显示驱动背板应用方面极具潜力。此外,MOTFTs与非晶硅薄膜晶体管的制备工艺兼容,制造成本较低,具有较大市场竞争优势。然而,衡量MOTFTs性能的两个关键指标——迁移率和稳定性之间的矛盾限制了其高端显示应用。因此,开发高迁移率兼具高稳定性的MOTFTs成为研究热点和产业竞争焦点。大量研究表明,稀土掺杂氧化物有源半导体材料体系有望实现这一目标。本文重点综述兼具高迁移率和高稳定性的稀土掺杂氧化物材料设计及MOTFTs已达到的性能,探讨稀土掺杂金属氧化物薄膜晶体管(RE-MOTFTs)面临的挑战和发展潜力。展开更多
The evolution of display backplane technologies has been driven by the relentless pursuit of higher form factor and superior performance coupled with lower power consumption.Current state-of-the-art backplane technolo...The evolution of display backplane technologies has been driven by the relentless pursuit of higher form factor and superior performance coupled with lower power consumption.Current state-of-the-art backplane technologies based on amorphous Si,poly Si,and IGZO,face challenges in meeting the requirements of next-generation displays,including larger dimensions,higher refresh rates,increased pixel density,greater brightness,and reduced power consumption.In this context,2D chalcogenides have emerged as promising candidates for thin-film transistors(TFTs)in display backplanes,offering advantages such as high mobility,low leakage current,mechanical robustness,and transparency.This comprehensive review explores the significance of 2D chalcogenides as materials for TFTs in next-generation display backplanes.We delve into the structural characteristics,electronic properties,and synthesis methods of 2D chalcogenides,emphasizing scalable growth strategies that are relevant to large-area display backplanes.Additionally,we discuss mechanical flexibility and strain engineering,crucial for the development of flexible displays.Performance enhancement strategies for 2D chalcogenide TFTs have been explored encompassing techniques in device engineering and geometry optimization,while considering scaling over a large area.Active-matrix implementation of 2D TFTs in various applications is also explored,benchmarking device performance on a large scale which is a necessary aspect of TFTs used in display backplanes.Furthermore,the latest development on the integration of 2D chalcogenide TFTs with different display technologies,such as OLED,quantum dot,and MicroLED displays has been reviewed in detail.Finally,challenges and opportunities in the field are discussed with a brief insight into emerging trends and research directions.展开更多
As organic thin film transistors(OTFTs)are set to play a crucial role in flexible and cost-effective electronic applica-tions,this paper investigates a high-mobility 6,13-bis(triisopropylsilylethynyl)pentacene(TIPS-pe...As organic thin film transistors(OTFTs)are set to play a crucial role in flexible and cost-effective electronic applica-tions,this paper investigates a high-mobility 6,13-bis(triisopropylsilylethynyl)pentacene(TIPS-pentacene)OTFT for use in flexi-ble electronics.The development of such high-mobility devices necessitates precise device modeling to support technology opti-misation and circuit design.The details of numerical simulation technique is discussed,in which,the electrical behavior of the device is well captured by fine tuning basic semiconductor equations.This technology computer-aided design(TCAD)has been validated with exprimental data.In addition,we have discussed about compact model fitting of the devices as well as parameter extraction procedure employed.This includes verification of Silvaco ATLAS finite element method(FEM)based results against experimental data gained from fabricated OTFT devices.Simulations for p-type TFT-based inverter are also per-formed to assess the performance of compact model in simple circuit simulation.展开更多
文摘金属氧化物薄膜晶体管(Metal oxide thin film transistors,MOTFTs)因其具有较高的载流子迁移率和较好的电学稳定性,在大尺寸发光显示驱动背板应用方面极具潜力。此外,MOTFTs与非晶硅薄膜晶体管的制备工艺兼容,制造成本较低,具有较大市场竞争优势。然而,衡量MOTFTs性能的两个关键指标——迁移率和稳定性之间的矛盾限制了其高端显示应用。因此,开发高迁移率兼具高稳定性的MOTFTs成为研究热点和产业竞争焦点。大量研究表明,稀土掺杂氧化物有源半导体材料体系有望实现这一目标。本文重点综述兼具高迁移率和高稳定性的稀土掺杂氧化物材料设计及MOTFTs已达到的性能,探讨稀土掺杂金属氧化物薄膜晶体管(RE-MOTFTs)面临的挑战和发展潜力。
基金supported in part by the National Research Foundation of Korea Grant Number:RS-2024-00448809National Research Foundation of Korea Grant Number:RS-2025-00517255+1 种基金National Research Foundation of Korea Grant Number:No.2021M3H4A1A02056037supported by Basic Science Research Program through the National Research Foundation of Korean(NRF)funded by the Ministry of Education(2020R1A6A1A03040516).
文摘The evolution of display backplane technologies has been driven by the relentless pursuit of higher form factor and superior performance coupled with lower power consumption.Current state-of-the-art backplane technologies based on amorphous Si,poly Si,and IGZO,face challenges in meeting the requirements of next-generation displays,including larger dimensions,higher refresh rates,increased pixel density,greater brightness,and reduced power consumption.In this context,2D chalcogenides have emerged as promising candidates for thin-film transistors(TFTs)in display backplanes,offering advantages such as high mobility,low leakage current,mechanical robustness,and transparency.This comprehensive review explores the significance of 2D chalcogenides as materials for TFTs in next-generation display backplanes.We delve into the structural characteristics,electronic properties,and synthesis methods of 2D chalcogenides,emphasizing scalable growth strategies that are relevant to large-area display backplanes.Additionally,we discuss mechanical flexibility and strain engineering,crucial for the development of flexible displays.Performance enhancement strategies for 2D chalcogenide TFTs have been explored encompassing techniques in device engineering and geometry optimization,while considering scaling over a large area.Active-matrix implementation of 2D TFTs in various applications is also explored,benchmarking device performance on a large scale which is a necessary aspect of TFTs used in display backplanes.Furthermore,the latest development on the integration of 2D chalcogenide TFTs with different display technologies,such as OLED,quantum dot,and MicroLED displays has been reviewed in detail.Finally,challenges and opportunities in the field are discussed with a brief insight into emerging trends and research directions.
基金The DST government of India is appreciated by the researchers for giving them the early career research grant under the project ECR/2017/000179。
文摘As organic thin film transistors(OTFTs)are set to play a crucial role in flexible and cost-effective electronic applica-tions,this paper investigates a high-mobility 6,13-bis(triisopropylsilylethynyl)pentacene(TIPS-pentacene)OTFT for use in flexi-ble electronics.The development of such high-mobility devices necessitates precise device modeling to support technology opti-misation and circuit design.The details of numerical simulation technique is discussed,in which,the electrical behavior of the device is well captured by fine tuning basic semiconductor equations.This technology computer-aided design(TCAD)has been validated with exprimental data.In addition,we have discussed about compact model fitting of the devices as well as parameter extraction procedure employed.This includes verification of Silvaco ATLAS finite element method(FEM)based results against experimental data gained from fabricated OTFT devices.Simulations for p-type TFT-based inverter are also per-formed to assess the performance of compact model in simple circuit simulation.