A band edge model in (101)-biaxial strained Si on relaxed Si1-x Gex alloy,or monoclinic Si (m-Si),is presented using the k · p perturbation method coupled with deformation potential theory. Results show that ...A band edge model in (101)-biaxial strained Si on relaxed Si1-x Gex alloy,or monoclinic Si (m-Si),is presented using the k · p perturbation method coupled with deformation potential theory. Results show that the [001], [001], [100], [100] valleys constitute the conduction band (CB) edge,which moves up in electron energy as the Ge fraction (x) increases. Furthermore,the CB splitting energy is in direct proportion to x and all the valence band (VB) edges move up in electron energy as x increases. In addition, the decrease in the indirect bandgap and the increase in the VB edge splitting energy as x increases are found. The quantitative data from the models supply valuable references for the design of the devices.展开更多
通过理论计算,对比分析了不同界面层对金属与n型锗(Ge)接触的影响。结果表明,界面层有利于降低费米能级钉扎效应,使金属与n型Ge接触的电子势垒高度降低。然而,由于界面层与Ge的导带之间存在带阶,界面层额外增加了不利的隧穿电阻。优化...通过理论计算,对比分析了不同界面层对金属与n型锗(Ge)接触的影响。结果表明,界面层有利于降低费米能级钉扎效应,使金属与n型Ge接触的电子势垒高度降低。然而,由于界面层与Ge的导带之间存在带阶,界面层额外增加了不利的隧穿电阻。优化选择合适的界面层材料,降低电子势垒高度的同时减小隧穿电阻,有利于减小比接触电阻率。采用厚度为1.5 nm的Zn O作界面层,电子势垒高度为0.075 e V,比接触电阻率为2×10-8Ω·cm2,比无界面层的0.26Ω·cm2降低了7个数量级。展开更多
基金the National Ministries and Commissions of China(Nos.51308040203,9140A08060407DZ0103)~~
文摘A band edge model in (101)-biaxial strained Si on relaxed Si1-x Gex alloy,or monoclinic Si (m-Si),is presented using the k · p perturbation method coupled with deformation potential theory. Results show that the [001], [001], [100], [100] valleys constitute the conduction band (CB) edge,which moves up in electron energy as the Ge fraction (x) increases. Furthermore,the CB splitting energy is in direct proportion to x and all the valence band (VB) edges move up in electron energy as x increases. In addition, the decrease in the indirect bandgap and the increase in the VB edge splitting energy as x increases are found. The quantitative data from the models supply valuable references for the design of the devices.
文摘通过理论计算,对比分析了不同界面层对金属与n型锗(Ge)接触的影响。结果表明,界面层有利于降低费米能级钉扎效应,使金属与n型Ge接触的电子势垒高度降低。然而,由于界面层与Ge的导带之间存在带阶,界面层额外增加了不利的隧穿电阻。优化选择合适的界面层材料,降低电子势垒高度的同时减小隧穿电阻,有利于减小比接触电阻率。采用厚度为1.5 nm的Zn O作界面层,电子势垒高度为0.075 e V,比接触电阻率为2×10-8Ω·cm2,比无界面层的0.26Ω·cm2降低了7个数量级。