由于电力二次设备内部复杂的数字映射关系及其受外部环境因素的动态影响,设备状态呈现出高度的非线性和不确定性,导致难以对其运行状态进行准确判断。通过对协方差矩阵进行分解,计算累计贡献率以此确定主成分数量,并将原始数据投影到由...由于电力二次设备内部复杂的数字映射关系及其受外部环境因素的动态影响,设备状态呈现出高度的非线性和不确定性,导致难以对其运行状态进行准确判断。通过对协方差矩阵进行分解,计算累计贡献率以此确定主成分数量,并将原始数据投影到由选定的主成分构成的新坐标系中,得到提取到的关键特征。结合神经网络算法,通过构建出设备状态到数字空间的映射模型,生成对应的状态向量矩阵。采用自回归积分滑动平均模型(autoregressive integrated moving average model,ARIMA)对设备的未来状态进行预测,并结合设备异常程度计算结果,实现状态研判。在实验中,对提出的方法进行了研判精度的检验。最终的测试结果表明,采用提出的方法对电力设备进行状态研判时,算法的坐标轴围成的面积(area under curve,AUC)值更高,具备较为理想的研判精度。展开更多
文摘由于电力二次设备内部复杂的数字映射关系及其受外部环境因素的动态影响,设备状态呈现出高度的非线性和不确定性,导致难以对其运行状态进行准确判断。通过对协方差矩阵进行分解,计算累计贡献率以此确定主成分数量,并将原始数据投影到由选定的主成分构成的新坐标系中,得到提取到的关键特征。结合神经网络算法,通过构建出设备状态到数字空间的映射模型,生成对应的状态向量矩阵。采用自回归积分滑动平均模型(autoregressive integrated moving average model,ARIMA)对设备的未来状态进行预测,并结合设备异常程度计算结果,实现状态研判。在实验中,对提出的方法进行了研判精度的检验。最终的测试结果表明,采用提出的方法对电力设备进行状态研判时,算法的坐标轴围成的面积(area under curve,AUC)值更高,具备较为理想的研判精度。