磁共振无线电能传输(wireless power transfer, WPT)技术是近年来近场调控的研究重点之一,其在移动电话、植入式医疗设备以及电动汽车等诸多方面都具有重要的应用价值.对于复杂传能通道需求(例如机械臂等),通常需要引入中继线圈构造多...磁共振无线电能传输(wireless power transfer, WPT)技术是近年来近场调控的研究重点之一,其在移动电话、植入式医疗设备以及电动汽车等诸多方面都具有重要的应用价值.对于复杂传能通道需求(例如机械臂等),通常需要引入中继线圈构造多米诺耦合阵列.然而,传统的多米诺耦合阵列存在明显的局限性:近场耦合导致的多重频率劈裂,使得系统无法保持固定的工作频率;耦合阵列易受到构造误差及参数扰动影响;目前研究多数集中在单负载传输,多负载传输系统仍然亟待开发;能量传输方向难以灵活控制.近年来,光子人工微结构为拓扑物理提供了良好的研究平台,使得拓扑特性得到了广泛的研究.拓扑结构的最显著特征是具有非零的拓扑不变量以及由体边对应确定的鲁棒性边界态,这一天然特性能够免疫制造缺陷和无序扰动.不仅如此,通过调整拓扑态的波函数分布能够使能量精准局域,从而实现定向的WPT.因此,将拓扑模式用于耦合阵列WPT具有重要的科学意义.本文主要阐明了基于宇称-时间(parity-time, PT)对称的通用型双线圈和三线圈WPT的基本原理,并且介绍了不同拓扑构型下的多米诺线圈阵列能够实现鲁棒的WPT,包括一维周期性模型(SSH链组成的有效二阶PT对称和有效三阶PT对称系统)、一维非周期性模型(拓扑缺陷态、类SSH链、准周期Harper链)以及高阶拓扑模型,最后对拓扑模式在WPT的应用方向进行了展望.展开更多
电场耦合无线电能传输(electric-field coupled wireless power transfer,EC-WPT)系统具有耦合机构轻薄且成本低、对耦合机构之间或周围导体产生的涡流损耗小等优点,适用于电动车动态无线充电应用。该文构建一种基于分段式耦合机构的动...电场耦合无线电能传输(electric-field coupled wireless power transfer,EC-WPT)系统具有耦合机构轻薄且成本低、对耦合机构之间或周围导体产生的涡流损耗小等优点,适用于电动车动态无线充电应用。该文构建一种基于分段式耦合机构的动态EC-WPT系统,以双边LC补偿的动态EC-WPT系统为对象建立系统的数学模型,对系统的接收极板在分段式导轨上方移动时系统的输出特性进行理论推导;给出一种分段式导轨的供电切换策略;以提升系统传输性能及耦合机构抗横向偏移能力等为目标,给出一种分段式耦合机构的参数设计方法;建立系统的仿真模型对接收极板运动过程中系统的输出功率进行分析;搭建一套实验装置对所设计系统及参数设计方法的合理性进行验证。仿真和实验结果表明,接收极板在相邻两段导轨过渡区域时系统的输出功率变化趋势与理论结果一致。展开更多
针对电动汽车无线充电系统在变电压间歇快速充电过程中由原副边线圈偏移和负载波动引起充电电压不稳定的问题,以及控制器参数大多依靠经验值和试凑法选取的问题,提出一种基于粒子群优化算法的无源控制器(passivity based controller,PBC...针对电动汽车无线充电系统在变电压间歇快速充电过程中由原副边线圈偏移和负载波动引起充电电压不稳定的问题,以及控制器参数大多依靠经验值和试凑法选取的问题,提出一种基于粒子群优化算法的无源控制器(passivity based controller,PBC)与非线性干扰观测器(nonlinear disturbance observer,NDO)相结合的复合控制策略。针对无线电能传输(wireless power transfer,WPT)系统副边DC-DC变换器设计考虑干扰补偿的无源控制器,通过引入非线性干扰观测器对干扰量进行估计,将干扰估计值与无源控制器结合,设计适合电动汽车变电压间歇无线充电系统的PBC-NDO复合控制器,采用粒子群多目标优化算法对复合控制器进行参数寻优,进一步提高控制器的抗干扰性能以及动态响应性能,通过仿真和实验验证该策略的有效性。实验结果表明:复合控制器具有强抗干扰性和动态响应性,充电阶段最大稳态误差偏移率为2%,动态响应时间控制在0.6 ms内。展开更多
频率调谐方法可以有效解决因耦合机构参数漂移导致的无线电能传输系统频率失谐问题,有利于提高系统的传输效率及运行稳定性。传统的双边频率调谐控制方法不统一,并且控制参数优化复杂。为此,该文提出一种适用于高阶补偿无线电能传输系...频率调谐方法可以有效解决因耦合机构参数漂移导致的无线电能传输系统频率失谐问题,有利于提高系统的传输效率及运行稳定性。传统的双边频率调谐控制方法不统一,并且控制参数优化复杂。为此,该文提出一种适用于高阶补偿无线电能传输系统的通用调谐解耦控制策略。首先,基于电路理论构建高阶补偿无线电能传输系统的分析模型,揭示双边谐振条件及其特征。其次,基于扰动观察法构建一种通用的双边调谐解耦控制策略,可实现原边和副边谐振参数的自适应调整。最后,搭建180 W LCC/LCC系统实验样机,验证了所提频率调谐解耦控制策略的有效性,在耦合机构偏移等工况下能够有效维持系统双边的谐振状态,提高了系统的传输效率和稳定性。展开更多
文摘磁共振无线电能传输(wireless power transfer, WPT)技术是近年来近场调控的研究重点之一,其在移动电话、植入式医疗设备以及电动汽车等诸多方面都具有重要的应用价值.对于复杂传能通道需求(例如机械臂等),通常需要引入中继线圈构造多米诺耦合阵列.然而,传统的多米诺耦合阵列存在明显的局限性:近场耦合导致的多重频率劈裂,使得系统无法保持固定的工作频率;耦合阵列易受到构造误差及参数扰动影响;目前研究多数集中在单负载传输,多负载传输系统仍然亟待开发;能量传输方向难以灵活控制.近年来,光子人工微结构为拓扑物理提供了良好的研究平台,使得拓扑特性得到了广泛的研究.拓扑结构的最显著特征是具有非零的拓扑不变量以及由体边对应确定的鲁棒性边界态,这一天然特性能够免疫制造缺陷和无序扰动.不仅如此,通过调整拓扑态的波函数分布能够使能量精准局域,从而实现定向的WPT.因此,将拓扑模式用于耦合阵列WPT具有重要的科学意义.本文主要阐明了基于宇称-时间(parity-time, PT)对称的通用型双线圈和三线圈WPT的基本原理,并且介绍了不同拓扑构型下的多米诺线圈阵列能够实现鲁棒的WPT,包括一维周期性模型(SSH链组成的有效二阶PT对称和有效三阶PT对称系统)、一维非周期性模型(拓扑缺陷态、类SSH链、准周期Harper链)以及高阶拓扑模型,最后对拓扑模式在WPT的应用方向进行了展望.
文摘电场耦合无线电能传输(electric-field coupled wireless power transfer,EC-WPT)系统具有耦合机构轻薄且成本低、对耦合机构之间或周围导体产生的涡流损耗小等优点,适用于电动车动态无线充电应用。该文构建一种基于分段式耦合机构的动态EC-WPT系统,以双边LC补偿的动态EC-WPT系统为对象建立系统的数学模型,对系统的接收极板在分段式导轨上方移动时系统的输出特性进行理论推导;给出一种分段式导轨的供电切换策略;以提升系统传输性能及耦合机构抗横向偏移能力等为目标,给出一种分段式耦合机构的参数设计方法;建立系统的仿真模型对接收极板运动过程中系统的输出功率进行分析;搭建一套实验装置对所设计系统及参数设计方法的合理性进行验证。仿真和实验结果表明,接收极板在相邻两段导轨过渡区域时系统的输出功率变化趋势与理论结果一致。
文摘针对电动汽车无线充电系统在变电压间歇快速充电过程中由原副边线圈偏移和负载波动引起充电电压不稳定的问题,以及控制器参数大多依靠经验值和试凑法选取的问题,提出一种基于粒子群优化算法的无源控制器(passivity based controller,PBC)与非线性干扰观测器(nonlinear disturbance observer,NDO)相结合的复合控制策略。针对无线电能传输(wireless power transfer,WPT)系统副边DC-DC变换器设计考虑干扰补偿的无源控制器,通过引入非线性干扰观测器对干扰量进行估计,将干扰估计值与无源控制器结合,设计适合电动汽车变电压间歇无线充电系统的PBC-NDO复合控制器,采用粒子群多目标优化算法对复合控制器进行参数寻优,进一步提高控制器的抗干扰性能以及动态响应性能,通过仿真和实验验证该策略的有效性。实验结果表明:复合控制器具有强抗干扰性和动态响应性,充电阶段最大稳态误差偏移率为2%,动态响应时间控制在0.6 ms内。
文摘频率调谐方法可以有效解决因耦合机构参数漂移导致的无线电能传输系统频率失谐问题,有利于提高系统的传输效率及运行稳定性。传统的双边频率调谐控制方法不统一,并且控制参数优化复杂。为此,该文提出一种适用于高阶补偿无线电能传输系统的通用调谐解耦控制策略。首先,基于电路理论构建高阶补偿无线电能传输系统的分析模型,揭示双边谐振条件及其特征。其次,基于扰动观察法构建一种通用的双边调谐解耦控制策略,可实现原边和副边谐振参数的自适应调整。最后,搭建180 W LCC/LCC系统实验样机,验证了所提频率调谐解耦控制策略的有效性,在耦合机构偏移等工况下能够有效维持系统双边的谐振状态,提高了系统的传输效率和稳定性。