针对锅炉过热汽温系统存在的大时延、强非线性和变量耦合等建模难题,建立了一种基于贝叶斯优化时间序列预测神经基扩展分析(neural basis expansion analysis for interpretable time series forecasting,N-BEATS)网络的过热汽温预测模...针对锅炉过热汽温系统存在的大时延、强非线性和变量耦合等建模难题,建立了一种基于贝叶斯优化时间序列预测神经基扩展分析(neural basis expansion analysis for interpretable time series forecasting,N-BEATS)网络的过热汽温预测模型。针对某600 MW超临界火电机组,结合机理分析确定模型的输入和输出变量,通过性能对比实验优化模型的输入/输出时延阶次、Block类型和激活函数,进一步利用贝叶斯优化算法对模型的超参数进行寻优,并与网格搜索、遗传算法的优化效果进行对比。采用该机组仿真运行数据进行建模实验,结果表明所提模型在预测精度方面优于传统优化方法及主流模型。展开更多
文摘针对锅炉过热汽温系统存在的大时延、强非线性和变量耦合等建模难题,建立了一种基于贝叶斯优化时间序列预测神经基扩展分析(neural basis expansion analysis for interpretable time series forecasting,N-BEATS)网络的过热汽温预测模型。针对某600 MW超临界火电机组,结合机理分析确定模型的输入和输出变量,通过性能对比实验优化模型的输入/输出时延阶次、Block类型和激活函数,进一步利用贝叶斯优化算法对模型的超参数进行寻优,并与网格搜索、遗传算法的优化效果进行对比。采用该机组仿真运行数据进行建模实验,结果表明所提模型在预测精度方面优于传统优化方法及主流模型。