功率预测是实现电能供需平衡、维持电网稳定运行的一项重要任务.随着分布式海上光伏系统的发展,光伏利用率不断提升,同时对光伏功率预测提出了更高的要求.针对机器学习方法在光伏功率时间序列预测中存在的样本数量不足、预测精度低以及...功率预测是实现电能供需平衡、维持电网稳定运行的一项重要任务.随着分布式海上光伏系统的发展,光伏利用率不断提升,同时对光伏功率预测提出了更高的要求.针对机器学习方法在光伏功率时间序列预测中存在的样本数量不足、预测精度低以及隐私泄露等问题,提出一种基于联邦学习和变分模态分解的长短期记忆神经网络功率预测模型(long short-term memory neural network power forecasting model based on federated learning and variational mode decomposition,FL-VMD-LSTM).利用主成分分析法和三次样条插值对气象数据进行预处理,同时利用VMD将光伏功率时间序列分解为多个分量进行分步预测,降低光伏功率时间序列的非平稳性和复杂度.通过横向联邦学习的本地训练和参数聚合方法,实现在保证数据隐私安全情况下的光伏功率预测.通过4个算例进行仿真实验,验证结果表明FL-VMD-LSTM模型在光伏功率预测方面具有较高精度,与传统算法相比,RMSE和MAE分别降低了55.7%和55.5%.展开更多
局部遮阴条件下光伏阵列的功率-电压特性曲线出现多个峰值,传统最大功率点跟踪(maximum power point tracking, MPPT)技术无法准确追踪到全局最大功率点。针对该问题提出一种基于改进算术优化算法(improved arithmetic optimization alg...局部遮阴条件下光伏阵列的功率-电压特性曲线出现多个峰值,传统最大功率点跟踪(maximum power point tracking, MPPT)技术无法准确追踪到全局最大功率点。针对该问题提出一种基于改进算术优化算法(improved arithmetic optimization algorithm, IAOA)的MPPT控制方法。首先,采用Sobol序列生成均匀分布的初始种群,增加种群多样性。其次,为了平衡算术优化算法(arithmetic optimization algorithm, AOA)的全局搜索和局部开发能力,对AOA中数学优化器加速函数的权重进行重构。最后,在AOA的位置更新中引入Lévy飞行策略,并将准反向学习用于每次更新后的最佳解,增强了算法的收敛速度和跳出局部最优的能力。仿真和实验结果表明,将改进后的算法应用于MPPT控制中,能够在不同的局部遮阴及光照突变条件下准确、快速地跟踪到全局最大功率点,且功率振荡小。展开更多
文摘功率预测是实现电能供需平衡、维持电网稳定运行的一项重要任务.随着分布式海上光伏系统的发展,光伏利用率不断提升,同时对光伏功率预测提出了更高的要求.针对机器学习方法在光伏功率时间序列预测中存在的样本数量不足、预测精度低以及隐私泄露等问题,提出一种基于联邦学习和变分模态分解的长短期记忆神经网络功率预测模型(long short-term memory neural network power forecasting model based on federated learning and variational mode decomposition,FL-VMD-LSTM).利用主成分分析法和三次样条插值对气象数据进行预处理,同时利用VMD将光伏功率时间序列分解为多个分量进行分步预测,降低光伏功率时间序列的非平稳性和复杂度.通过横向联邦学习的本地训练和参数聚合方法,实现在保证数据隐私安全情况下的光伏功率预测.通过4个算例进行仿真实验,验证结果表明FL-VMD-LSTM模型在光伏功率预测方面具有较高精度,与传统算法相比,RMSE和MAE分别降低了55.7%和55.5%.