In this paper, the problem of cubature Kalman fusion filtering(CKFF) is addressed for multi-sensor systems under amplify-and-forward(AaF) relays. For the purpose of facilitating data transmission, AaF relays are utili...In this paper, the problem of cubature Kalman fusion filtering(CKFF) is addressed for multi-sensor systems under amplify-and-forward(AaF) relays. For the purpose of facilitating data transmission, AaF relays are utilized to regulate signal communication between sensors and filters. Here, the randomly varying channel parameters are represented by a set of stochastic variables whose occurring probabilities are permitted to exhibit bounded uncertainty. Employing the spherical-radial cubature principle, a local filter under AaF relays is initially constructed. This construction ensures and minimizes an upper bound of the filtering error covariance by designing an appropriate filter gain. Subsequently, the local filters are fused through the application of the covariance intersection fusion rule. Furthermore, the uniform boundedness of the filtering error covariance's upper bound is investigated through establishing certain sufficient conditions. The effectiveness of the proposed CKFF scheme is ultimately validated via a simulation experiment concentrating on a three-phase induction machine.展开更多
基金supported in part by the National Natural Science Foundation of China(12171124,61933007)the Natural Science Foundation of Heilongjiang Province of China(ZD2022F003)+2 种基金the National High-End Foreign Experts Recruitment Plan of China(G2023012004L)the Royal Society of UKthe Alexander von Humboldt Foundation of Germany
文摘In this paper, the problem of cubature Kalman fusion filtering(CKFF) is addressed for multi-sensor systems under amplify-and-forward(AaF) relays. For the purpose of facilitating data transmission, AaF relays are utilized to regulate signal communication between sensors and filters. Here, the randomly varying channel parameters are represented by a set of stochastic variables whose occurring probabilities are permitted to exhibit bounded uncertainty. Employing the spherical-radial cubature principle, a local filter under AaF relays is initially constructed. This construction ensures and minimizes an upper bound of the filtering error covariance by designing an appropriate filter gain. Subsequently, the local filters are fused through the application of the covariance intersection fusion rule. Furthermore, the uniform boundedness of the filtering error covariance's upper bound is investigated through establishing certain sufficient conditions. The effectiveness of the proposed CKFF scheme is ultimately validated via a simulation experiment concentrating on a three-phase induction machine.