采用Matlab软件基于跨膜电压、微孔半径以及孔的受力随时间和空间变化的分析来模拟细胞在1 k V/cm、100μs脉冲期间电穿孔动态变化过程。采用的模型相比传统模型有两点明显的改进:第一,利用微孔能量的概率模型判断微孔半径变化的初始时...采用Matlab软件基于跨膜电压、微孔半径以及孔的受力随时间和空间变化的分析来模拟细胞在1 k V/cm、100μs脉冲期间电穿孔动态变化过程。采用的模型相比传统模型有两点明显的改进:第一,利用微孔能量的概率模型判断微孔半径变化的初始时间,当脉冲电场注入的能量大于微孔的最大能量的概率超过0.99时,微孔半径开始变化;第二,建立微孔受力模型来描述微孔的发展和分布,提出新的参数-孔冲量来决定微孔的大小。结果表明,除了极点不发生穿孔外,细胞膜都发生电穿孔,细胞膜大部分区域的微孔的受力接近于0,孔径基本区域稳定,不发生变化;但靠近极点附近的小部分区域孔径受力为正值,如果延长脉冲时间,孔径仍然在发展。此模型可以用来判断微孔的形成与预测微孔的发展。展开更多
文摘采用Matlab软件基于跨膜电压、微孔半径以及孔的受力随时间和空间变化的分析来模拟细胞在1 k V/cm、100μs脉冲期间电穿孔动态变化过程。采用的模型相比传统模型有两点明显的改进:第一,利用微孔能量的概率模型判断微孔半径变化的初始时间,当脉冲电场注入的能量大于微孔的最大能量的概率超过0.99时,微孔半径开始变化;第二,建立微孔受力模型来描述微孔的发展和分布,提出新的参数-孔冲量来决定微孔的大小。结果表明,除了极点不发生穿孔外,细胞膜都发生电穿孔,细胞膜大部分区域的微孔的受力接近于0,孔径基本区域稳定,不发生变化;但靠近极点附近的小部分区域孔径受力为正值,如果延长脉冲时间,孔径仍然在发展。此模型可以用来判断微孔的形成与预测微孔的发展。