碳化硅(SiC)晶体可以用作无源监控器测量反应堆的中子辐照温度,在未来高温强辐射的先进核反应堆中具有重要的应用前景。SiC测温技术自20世纪60年代被首次提出以来,基于SiC结构、热学和电学性质的中子辐照效应,人们建立了宏观尺寸法、质...碳化硅(SiC)晶体可以用作无源监控器测量反应堆的中子辐照温度,在未来高温强辐射的先进核反应堆中具有重要的应用前景。SiC测温技术自20世纪60年代被首次提出以来,基于SiC结构、热学和电学性质的中子辐照效应,人们建立了宏观尺寸法、质量密度法、热导率法和电阻率法等各种SiC测温方法。本文首先综述了这些SiC测温方法的基本原理和工作特点,然后着重介绍了中国原子能科学研究院(China Institute of Atomic Energy,CIAE)SiC测温系统的研究进展,通过中子辐照诱导SiC晶格肿胀的理论计算,分析和验证了该系统测温结果的可靠性,探讨了进一步提高SiC测温效率的实验方法。展开更多
Cross sections of the^(58,60,61)Ni(n,α)^(55,57,58)Fe reactions were measured at 8.50,9.50 and 10.50 MeV neutron energies based on the HI-13 tandem accelerator of China Institute of Atomic Energy(CIAE)with enriched^(5...Cross sections of the^(58,60,61)Ni(n,α)^(55,57,58)Fe reactions were measured at 8.50,9.50 and 10.50 MeV neutron energies based on the HI-13 tandem accelerator of China Institute of Atomic Energy(CIAE)with enriched^(58)Ni,^(60)Ni,and^(61)Ni foil samples with backings.A twin gridded ionization chamber(GIC)was used as the charged particle detector,and an EJ-309 liquid scintillator was used to obtain the neutron energy spectra.The relative and absolute neutron fluxes were determined via three highly enriched^(238)U_(3)O_(8)samples inside the GIC.The uncertainty of the present data of the^(58)Ni(n,α)^(55)Fe reaction is smaller than most existing measurements.The present data of^(60)Ni(n,α)^(57)Fe and^(61)Ni(n,α)^(58)Fe reactions are the first measurement results above 8 MeV.The present experimental data could be reasonably reproduced by calculations with TALYS-1.9 by adjusting several default values of theoretical model parameters.展开更多
文摘碳化硅(SiC)晶体可以用作无源监控器测量反应堆的中子辐照温度,在未来高温强辐射的先进核反应堆中具有重要的应用前景。SiC测温技术自20世纪60年代被首次提出以来,基于SiC结构、热学和电学性质的中子辐照效应,人们建立了宏观尺寸法、质量密度法、热导率法和电阻率法等各种SiC测温方法。本文首先综述了这些SiC测温方法的基本原理和工作特点,然后着重介绍了中国原子能科学研究院(China Institute of Atomic Energy,CIAE)SiC测温系统的研究进展,通过中子辐照诱导SiC晶格肿胀的理论计算,分析和验证了该系统测温结果的可靠性,探讨了进一步提高SiC测温效率的实验方法。
基金Supported by the National Natural Science Foundation of China(11775006)China Nuclear Data Center and the Science and Technology on Nuclear Data Laboratory.
文摘Cross sections of the^(58,60,61)Ni(n,α)^(55,57,58)Fe reactions were measured at 8.50,9.50 and 10.50 MeV neutron energies based on the HI-13 tandem accelerator of China Institute of Atomic Energy(CIAE)with enriched^(58)Ni,^(60)Ni,and^(61)Ni foil samples with backings.A twin gridded ionization chamber(GIC)was used as the charged particle detector,and an EJ-309 liquid scintillator was used to obtain the neutron energy spectra.The relative and absolute neutron fluxes were determined via three highly enriched^(238)U_(3)O_(8)samples inside the GIC.The uncertainty of the present data of the^(58)Ni(n,α)^(55)Fe reaction is smaller than most existing measurements.The present data of^(60)Ni(n,α)^(57)Fe and^(61)Ni(n,α)^(58)Fe reactions are the first measurement results above 8 MeV.The present experimental data could be reasonably reproduced by calculations with TALYS-1.9 by adjusting several default values of theoretical model parameters.