稀土元素钐(Samarium,Sm)及其合金在永磁材料领域应用广泛,但其高昂的提取成本与繁琐的制备工艺严重制约发展,亟需开发新型制备方法。本研究旨在阐明Sm_(2)O_(3)、ZnO及Sm_(2)O_(3)-ZnO复合氧化物在CaCl_(2)-NaCl熔盐中的电化学行为,为...稀土元素钐(Samarium,Sm)及其合金在永磁材料领域应用广泛,但其高昂的提取成本与繁琐的制备工艺严重制约发展,亟需开发新型制备方法。本研究旨在阐明Sm_(2)O_(3)、ZnO及Sm_(2)O_(3)-ZnO复合氧化物在CaCl_(2)-NaCl熔盐中的电化学行为,为制备Sm-Zn合金提供理论依据。本文采用熔盐电脱氧法,在CaCl_(2)-NaCl熔盐体系中构建三电极系统,通过循环伏安法(Cyclic Voltammetry,CV)和方波伏安法(Square Wave Voltammetry,SWV)对Sm_(2)O_(3)、ZnO及Sm_(2)O_(3)-ZnO三种金属氧化物的电化学行为进行研究分析。研究结果表明:Sm_(2)O_(3)还原为金属Sm的还原电位约为-1.80 V vs.Ag/Ag^(+),直接电脱氧效率较低;ZnO转化为金属Zn的还原电位约为-0.75 V vs.Ag/Ag^(+);Sm_(2)O_(3)-ZnO混合物在-1.13 V vs.Ag/Ag^(+)左右被还原为SmZn12,在约-1.56 V vs.Ag/Ag^(+)处被还原形成Sm_(2)Zn_(17)合金。不同电解条件下的产物分析结果显示,相比-1.70 V vs.Ag/Ag^(+),在-2.30 V vs.Ag/Ag^(+)、923 K条件下对Sm_(2)O_(3)-ZnO进行20 h恒电位电解时Sm_(2)O_(3)-ZnO能完全转化为SmZn12和Sm_(2)Zn_(17)合金。本研究为稀土金属氧化物熔盐电解制备稀土金属及其合金提供了重要的电化学机制信息与工艺优化路径选择。展开更多
文摘稀土元素钐(Samarium,Sm)及其合金在永磁材料领域应用广泛,但其高昂的提取成本与繁琐的制备工艺严重制约发展,亟需开发新型制备方法。本研究旨在阐明Sm_(2)O_(3)、ZnO及Sm_(2)O_(3)-ZnO复合氧化物在CaCl_(2)-NaCl熔盐中的电化学行为,为制备Sm-Zn合金提供理论依据。本文采用熔盐电脱氧法,在CaCl_(2)-NaCl熔盐体系中构建三电极系统,通过循环伏安法(Cyclic Voltammetry,CV)和方波伏安法(Square Wave Voltammetry,SWV)对Sm_(2)O_(3)、ZnO及Sm_(2)O_(3)-ZnO三种金属氧化物的电化学行为进行研究分析。研究结果表明:Sm_(2)O_(3)还原为金属Sm的还原电位约为-1.80 V vs.Ag/Ag^(+),直接电脱氧效率较低;ZnO转化为金属Zn的还原电位约为-0.75 V vs.Ag/Ag^(+);Sm_(2)O_(3)-ZnO混合物在-1.13 V vs.Ag/Ag^(+)左右被还原为SmZn12,在约-1.56 V vs.Ag/Ag^(+)处被还原形成Sm_(2)Zn_(17)合金。不同电解条件下的产物分析结果显示,相比-1.70 V vs.Ag/Ag^(+),在-2.30 V vs.Ag/Ag^(+)、923 K条件下对Sm_(2)O_(3)-ZnO进行20 h恒电位电解时Sm_(2)O_(3)-ZnO能完全转化为SmZn12和Sm_(2)Zn_(17)合金。本研究为稀土金属氧化物熔盐电解制备稀土金属及其合金提供了重要的电化学机制信息与工艺优化路径选择。