针对燃气轮机转子运行环境恶劣且故障多发的特点,为了及时有效地识别转子的异常运行状态,提出基于极端梯度提升(Extreme Gradient Boosting,XGBoost)和局部均值分解(Local Mean Decomposition,LMD)与核主元分析(Kernel Principal Compon...针对燃气轮机转子运行环境恶劣且故障多发的特点,为了及时有效地识别转子的异常运行状态,提出基于极端梯度提升(Extreme Gradient Boosting,XGBoost)和局部均值分解(Local Mean Decomposition,LMD)与核主元分析(Kernel Principal Component Analysis,KPCA)相结合的燃气轮机转子故障预警方法。首先采用自适应小波阈值法对来自SIS系统的振动数据进行降噪处理,通过对比普通小波阈值法的降噪效果,验证了该方法对于转子振动数据降噪的有效性和优越性;然后构建基于LMD-XGBoost的转子振动信号混合预测模型,提取实时振动信号分解得到的特征分量并进行预测与重构;再通过LMD-KPCA模型计算故障监测指标T 2和SPE,利用正常工况下的振动数据求取故障监测指标的阈值,输入混合预测信号计算出故障监测指标的统计量,通过设置故障监测指标超过阈值线的比例作为最终预警判据。通过上海某燃气电厂转子故障案例表明,该混合预警方法可实现转子故障早期预警,具有实际工程应用价值。展开更多
文摘针对燃气轮机转子运行环境恶劣且故障多发的特点,为了及时有效地识别转子的异常运行状态,提出基于极端梯度提升(Extreme Gradient Boosting,XGBoost)和局部均值分解(Local Mean Decomposition,LMD)与核主元分析(Kernel Principal Component Analysis,KPCA)相结合的燃气轮机转子故障预警方法。首先采用自适应小波阈值法对来自SIS系统的振动数据进行降噪处理,通过对比普通小波阈值法的降噪效果,验证了该方法对于转子振动数据降噪的有效性和优越性;然后构建基于LMD-XGBoost的转子振动信号混合预测模型,提取实时振动信号分解得到的特征分量并进行预测与重构;再通过LMD-KPCA模型计算故障监测指标T 2和SPE,利用正常工况下的振动数据求取故障监测指标的阈值,输入混合预测信号计算出故障监测指标的统计量,通过设置故障监测指标超过阈值线的比例作为最终预警判据。通过上海某燃气电厂转子故障案例表明,该混合预警方法可实现转子故障早期预警,具有实际工程应用价值。